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Abstract

A model for ground motion at a site resulting from finite-length ruptures 
along a fault is analyzed. The model assumes that rupture length is a function of 
earthquake magnitude, that ruptures occur with equal probability at all 
allowable rupture locations, and that ground motion (acceleration) at a site is a 
function of the closest distance from the site to the causative rupture. Ruptures 
must be wholly contained within the fault limits, in contrast with the model of 
Der Kiureghian and Ajig (1977) which permits a rupture to extend beyond the 
fault by one-half the rupture length.

Equations are developed for determining the average frequency with which 
ruptures along a fault will cause specified accelerations to be exceeded at a 
given site. It is shown that rupture length plays a large role in the exceedance 
rates obtained and that minimum and maximum earthquake magnitudes and 
overall fault length may also affect the values significantly. The effects of 
varying the parameters differ with site location and acceleration level.

The usual relationship between median rupture length and magnitude is 
assumed, log(t)   ct TUTTI. For each magnitude, rupture lengths are lognormally 
distributed about the median value with standard deviation CTJ. Using "long" 
(those corresponding, for example, to 1.5crj ) versus "short" ( l.Saj ) rupture 
lengths for each magnitude may change the calculated exceedances of an 
acceleration by a factor of twenty or more. The expected number of 
exceedances obtained by integrating over rupture length may, in many cases, 
be approximated by using only a single rupture length per magnitude 
corresponding to a mean rupture length (which may differ considerably from 
the median length for the magnitude).

A series expansion permits acceleration exceedances to be separated into 
"point source" and "rupture length" contributions. For an Esteva attenuation of 
the form log a^Ci+cgm+cslog/? the first "point source" term (assuming infinite 
maximum magnitude) is equivalent to Cornell's (1968) result for point sources 
(zero-length ruptures) on infinite faults; this term may account for only a small 
fraction of the total exceedances obtained when mean or median rupture 
lengths are used.

If accelerations are regarded as being lognormally distributed with standard 
deviation cra , the expected exceedances calculated for a fixed acceleration at a 
site may be significantly higher than those obtained when only the log-mean 
acceleration is used for each magnitude and distance.

Calculated ground motion exceedance rates may differ by a factor of two or 
more at sites a few kilometers apart near the end of a fault, and fault location, if 
not known exactly, should perhaps be treated probabilistically.



Introduction

Computer programs (Bender and Perkins, 1982, and McGuire 1976, 1978) 

that have been used extensively for seismic hazard analysis and mapping 

assume that earthquakes occur as points within source zones or as finite length 

ruptures along faults. This paper concerns only the latter situation, and 

develops equations for the rupture model used. The analytic development (as 

contrasted with the numerical approach of the computer programs) facilitates 

an examination of the model and enables a better understanding of the roles of 

the various parameters and interactions between them.

The rupture model to be investigated is a line-rupture model, meaning 

earthquakes occur as finite length breaks on a fault line. Acceleration at a site 

resulting from a single rupture of a given magnitude and location is a function of 

closest distance from the site to the rupture. This distance obviously is not 

equivalent to epicentral or hypocentral distance, and authors who use the latter 

rather than closest distance are in effect modeling point sources on a line.

Accelerations are evaluated using an attenuation relationship giving 

acceleration as a function of earthquake magnitude and distance. It does not 

seem possible to use hypocentral distance and adjust the attenuation function 

to take rupture length into account since, for example, in a rectangular 

coordinate system, a linear rupture with hypocenter at (0,0) and end points at 

(0,0), (X.O) would be at a closest distance of zero from a site at (X,0); a rupture 

with the same hypocenter but having end points at (0,0), (-X.O) would be at 

closest distance X from the same site. An attenuation relationship based on 

hypocentral distance would not be able to distinguish between the two cases in 

the example. For a magnitude 6.5 earthquake, a median rupture length given by 

Bonilla and Buchanan (1970) was 28 km, representing a non-neglible difference



between possible hypocentral and closest distances.

Additionally, when acceleration resulting at a site from a rupture of finite 

length on a fault is regarded as a function of closest distance from the site to 

the rupture, a long rupture will tend to produce a higher acceleration at a site 

than will a short rupture, since the closest distance from a long segment to a 

site is likely to be less than that from a shorter segment.

The model to be analyzed will henceforth be referred to as the fcr or fault 

contained rupture model; it will be compared with the fault rupture model of 

Ang and Der Kiureghian (suggested by Ang, 1974, and expanded by Der 

Kiureghian and Ang, 1975, 1977). In the fcr model, ruptures must be wholly 

contained within the fault, whereas in the model of Der Kiureghian and Ang only 

rupture centers must be located on the fault. It will be shown that, especially 

for sites near the fault, either fault rupture model tends to give substantially 

more exceedances of an acceleration level than does the model (Cornell, 1968) 

in which earthquakes are regarded as point sources.

Equations are developed in this paper for determining exceedance rates of 

specified accelerations at a site using a general attenuation function and then 

using a particular (Esteva, 1969) form, log a = c 1 4-c 2-77i4-c a log JR. It will be shown 

that rupture length, fault length and earthquake magnitude range affect 

acceleration exceedance rates in a complicated manner depending on 

acceleration level and site location relative to the fault. Some sample results 

 will be provided to illustrate the various effects and to compare models.

Model assumptions will first be listed, and then it will be shown how they are 

implemented in two computer programs. This will help to introduce some of the 

basic ideas, integrations, probability distributions, and geometry of the model.



Model Assumptions

^Assumption 1. In an X-Y coordinate system, the fault is a single line segment of 

length L, located on the X axis extending from (0,0) to (Z»,0). The site is located 

at (X.P).

Assumption 2. Rupture lengths are lognormally distributed as a function of 

magnitude with standard deviation at . (See, for example, Bonilla and Buchanan, 

1970). If the mean value of the log of the length of a rupture of a magnitude m 

earthquake is

In6m -a+gm (l) 

where 6m = break or rupture length

m^Richter magnitude.

a > 0, g > 0 (constants),

the variation in In 6m is normally distributed with standard deviation 0j. The 

probability of a break of length bm in the range

exp[a +g m + frv^^b ^ exp[a + g m + (fr -f e) O| ] (2)

is the area under the normal probability integral

Assumption 3. A break of length 6m may with equal probability have its center 

at any point (C",0) on the fault such that

The break must be wholly contained within the fault, and so break length cannot 

exceed fault length. [Ang's model requires instead that the break be centered 

on the fault: (0.0) ^ (C.O) ^(L.O) with a maximum break length of 2L.]

Assumption 4. Peak acceleration (or velocity or some other measure of ground 

motion) at the site (X ,P) is a function of earthquake magnitude and closest



distance from the break to the point. Accelerations for each magnitude are 

distributed lognormally around the mean peak (log) value with standard

deviation a0 .

Assumption 5. Earthquakes are restricted to occur in the magnitude range 

. Their density is the truncated negative exponential distribution:

b exp[  b (rn -m0)]
l-exp[-6 (mmM-m0)] for

(4)
0 elsewhere

Assumption 8. The mean occurrence rate T per year of earthquakes for 

magnitudes in the range m0 ^ m ^7nmax for the fault remains constant during 

the time periods of interest.

Assumption 7. Earthquake occurrences have a Poisson distribution, that is, the 

probability of exactly k occurrences during time period t is

where T   average rate per unit time.

Note that earthquakes are regarded as independent events; the fact that an 

earthquake did or did not occur at a specific time has no influence on 

subsequent earthquake arrivals.

Assumptions 1-6 are used to determine the yearly rate of exceedance 

Pex(cLi) of specified levels of ground motion o^ at a site. Given Pex(a^) t from 

assumption 7, the probability that no earthquake occurring on the fault during a 

period of t years will produce an acceleration a ^ 0+ is

P(a < Oi) = exp[-Pex (0+) t] (5) 

and the probability that one or more earthquakes will produce an acceleration

a ^ o^ is P(a ^a~i) = 1 -exp[-Pea:(ai ) t].

The computer program for seismic hazard evaluation. SE1SRISK II (Bender



and Perkins, 1982), finds accelerations that have specified probabilities of being 

exceeded during given f-year time periods. The seismic hazard program, FRISK 

(McGuire, 1978), determines instead accelerations corresponding to time 

periods t (which McGuire calls return periods) for which

  L1 ^ __

The computation of exceedance rates Pex{a\) of various accelerations o^ in 

each of the computer programs will be described briefly in the following section. 

The programs differ in their approaches but yield consistent values of Pex(ai ) 

when the same parameter values and attenuation function are used.

Current Computational Procedures

Both computer programs permit a fault to be composed of several 

connected straight-line segments, and allow contributions to Pex(ai ) from a set 

of faults to be summed. 

I. FRISK (Me Guire, 1978).

FRISK divides the magnitude range m 0 ^m^mmex into a number (n^ap) of 

intervals Am apart, and assumes that all earthquakes for which

Am /  _ . - \

occur at rrij. the midpoint of the j ih interval. A set of (nw ) rupture length are 

selected for each magnitude so that the i**1 length for the m** magnitude:

^n= exp(a +g m, + fi^i) (6)

occurs with probability pit where

- 
Pi = -TT- exp(   )dx and SPi = 1- (7)

Ruptures of length brr,(i) have their centers at each of n evenly spaced 

locations At apart on the fault at distances along the fault



(i) b (i) 6 (i)

with probability   for each location.
71

Since all n locations for each magnitude and rupture length are equally 

likely, the fractional seismicity associated with a single rupture 6 m (i) is

where (from equation 4)

exp[-6 (my - m0)][exp(  ̂ ) - exp(    j

l-exp[-6(mcltlx -m0)] 

= probability of an earthquake in the jitl magnitude interval.

The closest distance from one segment &T».(i) to the site is determined and 

the mean acceleration for a magnitude m earthquake at that distance is 

computed from, an assumed functional relationship between acceleration, 

earthquake magnitude and distance from site to source. If a. l is the calculated 

mean log acceleration, the probability that the actual acceleration will exceed 

the value a 0 is (by model assumption 4),

(10)
°

where

= the complement of the standardized normal distribution. 

The probability that an earthquake in the range m 0 ^m ^m^^ produces an 

acceleration a^a 0 at (X.P) then is the probability that a ^a 0, given that a 

particular break location, break length and earthquake magnitude occur, 

weighted by the probability of that occurrence and summed over all cases.

pr[a>a 0]= £ £ £,pr[a £a 0 |m,, 6 (t.fc ), s(bn (i))] (12)* J



where 6m (i,fc) = i <h break length for magnitude mj at k**1 rupture location

*>m/0 f
(rupture center on fault at distance   -   + (k   1) A! from end).

&

The annual exceedance rate Pex(ai ) then is pr[a^cti] multiplied by the 

annual rate of earthquakes in the range m 0 ^m ^mmiLr . FRISK calculates 

Pex(<Li\ for a selected set of a( and interpolates to find the accelerations for the 

desired return periods.

*r (1 0~ a<
Jn using the program for hazard mapping, calculating y> [    j for each

°o

break for each magnitude is quite time consuming. The interpolation may be 

poor if the selected 04 are too far from the solution values. Choosing a small 

but efficient set of 0+ may be difficult if a large geographical area is mapped and 

accelerations vary widely. Choosing a large set of 0+ can result in wasted 

computation. These difficulties are largely avoided in the second program, 

which builds a histogram of acceleration occurrences at a site and then 

determines acceleration exceedances using the histogram.

II. SE1SRISK II (Bender and Perkins. 1982)

In SE1SRISK II (revised from the original undocumented program of S.T. 

Algermissen and D.M. Perkins, 1972), a table of 100 acceleration values is 

constructed such that the k th entry ak represents accelerations in the range 

djt_i^ a <ajfc. Associated with these CL^'S are accumulators into which fractional 

expected acceleration occurrences are summed. For a given magnitude, 

acceleration a in the range afc_i^a<o.j. will be produced only if the point of a 

rupture closest to the site is within an appropriate distance range. Therefore, 

for each magnitude used, distances that correspond to the acceleration 

boundaries ak are determined (by interpolating in a table of acceleration as a 

function of distance and magnitude). Let djtO") ~ distance at which a magnitude 

TTL earthquake causes acceleration ak .

8



For a specified rupture midpoint on the fault and rupture length, there is a 

unique closest distance from the rupture to the site. There may, therefore, be 

an interval of length x[om (i)] along the fault such that ruptures with midpoints

in this interval are at distance d^{j ) < d£ djc-\(j) from (X,P). The fraction of

,breaks 6m (i) yielding at _ 1 ^a<ai. then becomes       . . Summing over 
/ L -6m/(i)

magnitude and rupture length gives the contribution to accelerations in the 

range a^-i^a < a*.

where s[5m .(i)] was defined in equation 8.

Since the accelerations a^ are mean values from a log normal distribution 

with standard deviation 0a , to account for acceleration variability each 0% is 

redistributed into the set of accumulators so that the fraction placed in the j' th 

accumulator for accelerations a^-i'^a <ay' is proportional to an area under the 

normal probability curve. Repeating for all k gives the new entry GJ'I

r / _ y N 12 
exp [ (X V* }] dx (14)

= (new) fractional earthquake occurrences in range Oy_i ^ a <a.j'. 

where

TiQf.   subscript corresponding to the maximum mean log 

acceleration possible at (X,P)

~ mean log acceleration for o^-i ^ a < a^. .
f&

A yearly exceedance rate Pex(ak ) of accelerations ak may be calculated 

dirctly as

'j (15) 

where rate = expected total earthquakes in one year in the

9



range m 0 £ m £ mmax

  subscript corresponding to highest acceleration 

after redistribution (fcmax- noc)-

Note that because cra is treated as independent of magnitude and distance, 

acclerations C* may be "spread out" only after the acceleration histogram at 

(X,P) has been completed. As a result, when earthquakes from a number of 

sources produce accelerations at the site. SE1SRISK II evaluates the normal 

probability integral much less frequently than does FRISK, and the larger 

number of accelerations at which Per(oi ) is computed reduces the interpolation 

errors.

The two computer programs were run for a variety of parameter 

combinations and geometries to investigate the properties of the fault-rupture 

model. Both programs, however, are subject to some discretization error (from 

treating a continuous distribution of magnitudes, rupture length and locations 

as if they were concentrated at a set of distinct points) and the numerical 

procedures cause a certain lack of smoothness in the results. These 

inaccuracies complicate making sensitivity studies using the programs and 

might cause us to attribute to the model properties that are really properties of 

the approximations made.

Jn the analytic formulation, we shall be concerned principally with Ex(ajf), 

exceedances of acceleration ak before acceleration variability is taken into 

account, that is from equation 13,

100

We begin by developing the appropriate equations for Ex(ak ) for the fault- 

rupture model defined by model assumptions 1-6.

10



Analytic Development of Fault Rupture Equations

Integrals for acceleration exceedance rates at a site will be developed using 

a general attenuation function a=/(m,/?) in which acceleration at a site 

increases with earthquake magnitude m and decreases with distance R from 

the source. R is defined here as the distance from the site to the nearest point 

on the rupture.

If the nearest point on the rupture is at depth d with coordinates (X^. 0.  d), 

the distance to the site at (X, Y) is

R = (X-XD)*+Y*+d z (16) 

This distance is identical to the distance from a surface rupture (d   0) to a

point at (X.P) where

Because the attenuation function in this case involves only the equivalent of a 

surface distance R, we shall hereafter, without loss of generality, assume the 

site lies at (X.P). Define

R i(m ) = distance at which an earthquake of magnitude m

produces acceleration dj at (X,P).

All ruptures on the fault of magnitude m earthquakes that have at least one 

point closer to (X.P) than R i(ra) will produce accelerations greater than ttj.

For each magnitude in the range of permitted magnitudes mQ^m ^ mmax, 

the fraction of possible ruptures on the fault that will be closer than R i(m) to 

(X tP) is sought. This fraction depends partly on rupture length, which is a 

function of magnitude.

Since by model assumption 2. rupture lengths are log normally distributed 

for each magnitude, define rupture length for magnitude m as a function of 

fr CTJ , that is

a +fr trl )exp(g m) = H(frcrt ) exp(y m). (17)

11



We shall calculate the rate of accelerations exceeding aj using, initially, a 

fixed value of fr in the rupture length-magnitude relationship; then we shall 

integrate over fr. Since fr CTJ is constant for the time being, we shall simplify 

the notation by writing bm =H exp(y m) for brn (fT(Ti) = H(fral ) exp(y m). H is 

now a constant multiplicative factor which stretches or shrinks the rupture 

length around its log-mean value for each magnitude, depending on the choice 

of fr. We first seek Ex(a.i\H). the expected rate of exceedance of acceleration 

aj at (X,P) given//.

Two cases will be considered: the perpendicular from (X,P) intersects the 

extended fault line (r=0) beyond the end of the fault segment (A!' < 0 or X >L); 

or the perpendicular from (X,P) intersects the fault segment itself (O^X ^L).

Case 1. X < 0 (Site beyond end of fault.) (By symmetry X > L could equivalently 

be considered.)

The point on the fault zj(m) that is at distance R i(m) from (X,P) is the 

solution to

or

Because the distance from (X ,P) to a point on the fault (£.0) increases as I 

increases, all ruptures of magnitude m earthquakes that have their closest 

endpoints at 0^£^xj(m) will produce acceleration a^a^ at (X,P). 

Equivalently, all ruptures with midpoints I = ^^ on the fault for which

2

will contribute to Ex(a l \H} (figure 1A).

There is a magnitude 7nlo below which a t will not be produced at (X t P) by a 

rupture anywhere on the fault. This corresponds to £1(771^,) = 0, and

12



Case 1. Site at (X,P) beyond end of fault, X <0.

(X.P)
(X.P)

L

(X.P)

B.

Case 2. Site "above" fault, O^X ^~L
2

(X.P)

(X.P)

r //////////Io ""'
"* '

b ^
[_/// n //// i 

1

E.

Figure 1. Locations on a fault of centers of magnitude m earthquakes yielding 
accelerations a ^aj at (X t P). Fault extends on x-axis from x =0 to x -L. Ruptures of 
magnitude m earthquakes centered on fault at x=l will cause accelerations a^aj at 
(X,P) as indicated.

R ^R^m)^ radius within which a magnitude m earthquake will produce 
acceleration a ^ aj at (X,P).

*mid = possible rupture-center locations on a fault of length L of a magnitude m
b 

earthquake of ruptures of length 6 = 6m .   

= point(s) on fault intersected by a circle of radius R j(m ) centered at (X,P).

13



Since magnitudes below mo are not permitted, set

(21) 

If m ,-ain >mroax. where 7n maT is the maximum permitted magnitude, aj does

not occur at (X.P). Therefore, we may assume 7n min <7n maT.

There is a magnitude m, above which all ruptures regardless of location on 

the fault will yield a > a l (figure IB). This is the magnitude m -mg for which

zj(m) =L - br(m.) 

br(m) = rnin(bm ,L)

(23)

where

(If rupture length bm as given by equation 17 would exceed fault length L,

rupture length is set equal to fault length). For m =mm

mr)- JP +X . (23) 

(There is a unique Solution mf since both br^n) and R i(m) are nondecreasing

as 77i increases.)

Set

(24)

The fraction of earthquakes of magnitude m that yields a j^aj at (X,P) is :

pr(a ^ (LI \H.
L   H exp(g7n)

(25)

<77l ^

Using equation 25 together with model assumptions 2 and 5 gives for X < 0:

f f (m)pr (a £ a^H, m) = (26)

 rate b exp(b
- exp[-6

f exp(-6 m)    

(Either integral may have a zero range of integration.)

14



Case 2. Q£X£ (Site "above" fault) 
c>

Let (X J3 ) be a site such that a perpendicular from the site to the extended 

fault line intersects the fault at some interior point. Assume O^A^   . (By

symmetry,   <X^L could equivalently be considered.) As in Case 1, we wish to 
ft

determine the fraction of the fault on which earthquakes producing 

accelerations a ^ a i at (X,P) may originate.

Again let mi0   minimum magnitude at which aj is felt at (X,P). This 

corresponds to R\(Trni0 ) = P, and the point on the fault line that is at distance 

jRi(mio ) from (X,P) is at (AT.O). that is, xl (mlo ) = X. Let m^^- max(m 0, rnlo ).

For m =7ni0 . only ruptures on the fault intersecting (AI'.O) - [xi(mj0 ),0] will 

produce a.\ at (X.P). For magnitudes 7n>mi0 , there will be two points rj (m) 

and Xi (m) on the extended fault line for which
IB

) E + P 2 (27) 

that is,

Xi (m ) = X   Ax (m ) and Xj (m) =X + Ax(?n)

for some Ar(m).

For a magnitude m earthquake ail ruptures with midpoints lmid in the range

will contribute to exceedances of czj at (X,P). However, since rupture length 

cannot exceed fault length and ruptures are required to be wholly contained 

within the fault ^^ is further restricted to lie within

or

(28)

Several cases must, therefore, be considered.

15



(a) Magnitudes m for which X - Ax (m) - 6m £ 0.

For magnitudes m for which this holds, the fault is so long that even if the fault 

were longer, any additional ruptures of length 6m would be too far away from the 

site (X,P) to produce accelerations a «£ai (figure 1C).

Let mz be the magnitude for which equality holds X = Ax (m ) -I- 6m . Define 

m^ as in equation 24. For m,^ ̂  m ^ m^ , all ruptures with midpoints lmid in
1  

the range

V_A -^L<j <y A bm
Ci t-t

will contribute to Ex(a.i\H). This corresponds to a fraction of possible 

magnitude m earthquakes

- / \ m /9Q v /r(m) =   -  -    (29) L -6

giving for 771,^ ^ m ^

> .«- N^a lf \H,m) =       -          -     -       (30)
L - H exp(y m )

(b) Magnitudes m > m^ for which ^ -I- Ax (m ) 4- 6

At these magnitudes, additional ruptures of length 6m would contribute to 

accelerations a>aj if the fault extended beyond (0,0) in the negative x- 

direction. Adding fault length beyond (L , 0) in the positive x-direction would not

increase the possible ruptures that produce a^ai at (X,P). (Recall X^ t

figure ID). Let m_ be the magnitude for which L  X   Ax (m^ ) + 6tT, .
* * 8

(mt ^77ir since L  X ̂ X based on the assumption that X ^ - .)
81 2

Define TTL,, as in equation 24. For m^, ^ TTL ^ TTI^ , all magnitude TTL ruptures for
  12

which

6m ~2~

16



will contribute for a fraction

X + Ax(m)1 '
  O

(31)

giving For mUl £ m

, ,
L - H exp(gr m)

(32)

(c) Magnitudes

All earthquakes regardless of their location on the fault will contribute to

exceedances of dj (figure IE).

For 771^ ^ 771 ^
0

(33)

Combining these results yields, for 0 ^^ ̂   -,

b rate exp(b TTI O)
- exp[-6 - 77i 0)]

exp( 6 m)
m)

r uL -H ex

***,

4- J exp( 6 m) J exp(  6 (34)

fall  

Equations 26 and 34 are the general fault-rupture equations.

A closer examination of these equations for Ex(a. l ]ff) will provide some insight 

into the effect of magnitude limits -m^,  ~u., and r/i^^ and the role of fault 

length, break length and site location. Along with the general results, we shall 

note some specific properties of the model when the widely used Esteva (1969) 

attenuation relationship for (log) acceleration as a function of distance and 

magnitude is used to define RI(TTI). We shall use the form

Ino. = GI + c £ m + Cj>0. C2>0, cs<0. (35)

In this case,

17



---- ). (36) 
C 3 C 3

(l) Minimum magnitude, TTIQ.

The choice of m 0 may significantly afTect the exceedance rate of some 

accelerations. If m^ the minimum magnitude yielding acceleration dj at (X,P) 

is less than m 0, the minimum assumed, then including additional earthquakes in 

the range 7nio £TTL <m 0 will increase the exceedances of a l by an amount equal 

to the change in Ex(a^ |/f) resulting when TTL inin = mLo rather than rn m â = 7n 0 is 

used as the lower limit of integration in equations 28 and 34. Loss of 

acceleration exceedances due to minimum magnitude cutoff should be 

suspected when a magnitude less than TTL O will produce accelerations greater 

than the acceleration of interest for some possible site-to-source distances.

More importantly, even when the minimum, magnitude cutoff does not cause 

loss of acceleration exceedances at levels of interest when a single acceleration 

is assigned to each magnitude and distance, it may do so when acceleration 

variability is taken into account. If a lognormal distribution of acceleration with 

standard deviation ; cra is assumed, accelerations are in effect "spread out" 

around their (log) mean values. Since there may be fewer accelerations a < aj 

to redistribute when magnitudes below m 0 are eliminated, ignoring these 

magnitudes may reduce the rate (after redistribution) of some accelerations 

a > aj.

For some reasonable values of Cj, C 2 and c 3 in the Esteva attenuation 

(equation 35), using m=4.5 as opposed to m   3.0 (where the rate for 

earthquakes with magnitudes m >4.5 remains the same in both cases) changes 

the frequency of accelerations up to .2g at distances of 10-20 km from the fault. 

The difference is greater when acceleration variability is taken into account 

than when only (log) mean values are used (figure 2).

18



: Yearly exceedances as a function 

of minimum magnitude

10-4.

1 10 100 
Acceleration percent gravity

Figure 2. Acceleration exceedances at a site 10 km from the center of a 400 km fault
when magnitudes are restricted to the range 4.5 ^m ^ 7.5 and when additional magni
tudes 3.0 ̂  771 < 4.5 are also included. Acceleration variability &a   .6
Attenuation function In a = 3.4 + . 89m - 1.17 In/? ;
ra£e=.l earthquakes per year in the range 4.5 ^ m ^ 7.5; 6 =2.

(2) TTUu or (TH-UB )  magnitude above which all ruptures occurring anywhere on 

the fault will yield acceleration a > ai at (X t P} for H fixed.

The fraction /r(m) of magnitude m earthquakes that contributes to 

acceleration a t increases steadily with magnitude in the range

and remains constant

where

/r(m) = (37)

for site at (X,P)t X < 0, or X > L 

for site at (X.P), Q^

19



Thus for fixed mnjn and mmu, as TTIJ decreases the fraction of earthquakes

mutism ^TH-ma, that cause acceleration a^ to be exceeded at (X.P) increases.

But the value of m^ depends upon rupture length, site location, acceleration

level and fault length. An understanding of the roles of each of these

parameters will help make clear certain behaviors of the model.

(a) Ex(ai \H) as a function of fault length and of the x-coordinate of site

location.

Consider sites at (0,P) and (  ,-P) at distance P perpendicular to the end to
c>

the center of the fault, respectively. The same minimum magnitude "m^^ will

produce acceleration a t at both these sites. Yet Ex(a,i\H) at ( ./*) may be
<u

(perhaps considerably) more than twice the value of Ex (ttj ]//) at (O.F) or even 

equal to it. depending on fault length L and acceleration a t (figure 3).

To see this, note that if the fault is sufficiently long, the entire contribution

to Ex(ai\H) T is from integral 7U and to £1x(aj|/r)(op) is from integral 7U in 
(^.P)

equation 34, yielding

Ex(a l \H) L *2£*(at|#)(o.P). (38) 
\ 2 . ;

(Equality holds only at H   0, that is for point sources or zero-length ruptures.)

On the other band, the acceleration o^ and fault length may be such that the 

entire contribution to the exceedances of aj at both sites is from the integral 

Jail, In this case,

\H) L =JFx(ai |/0{cu>) (39)
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Figure 3. Relative acceleration exceedances at sites 30 km from the center and 30 km 
from the end of faults 100 and 400 km long; 4.0 ̂  m ^ 8.5; 6=2.

(b) Acceleration exceedances as a function of P (perpendicular distance) of the 

site from the fault and fixed mjo (for the Esteva attenuation.)

For two sites with the same X-coordinate and diflerent P, (X,P^) and (X ,Pz), 

let m^ (fixed) be the lowest magnitude producing acceleration aj at (X ,P J and 

a 2 at (X.PZ). We shall show that if Pz>P\, a higher fraction of the earthquakes 

in the range 77ij0 <m <mmax contributes to Ex(a^ {H^xj3 ) than contributes to 

Ex(a,2 \H}{X,P )  F°r the Esteva attenuation, o^ is the acceleration for which

lno£ = c l + c z mio + CslnP,, i = l,2. (40) 

and for a rupture at distance /?j = k Pit where k = a constant, o^ is produced by

the magnitude TTT^ for which
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lnat = Cj-f c^rrii + c a ln(fc Pi)

C 3
from which it follows that     In A: =m^   m^, -£ = 1,2 Therefore, mi = m z and di,

the length of fault on which magnitude m^ earthquakes will produce acceleration 

O at X.P is

(41) 

Hence a larger fraction of earthquakes at magnitudes mio <m will contribute to

Ex(ai \H}(xj> l) than to Ex(a^\H}^[fp^, and for a fixed magnitude range, the 

more distant site is affected by earthquakes along a higher fraction of the fault 

(figure 4). 

(3) Maximum magnitude 7n max

Because high accelerations can result from high magnitude earthquakes, 

uncertainty in specifying the "true" mmlLI has been of considerable concern in 

risk analysis. We shall assume the rate of earthquake occurrences remains fixed 

for mc ^77i max(oid) and investigate the effect of adding additional earthquakes in 

the range TnIraa(old)<t Tn ^mmax(neiL>). That is, we shall assume

   6exp[-6(m-m0)]
dm for TIL o ^m ^ mmal(7zeiL>)

exp[-6 (mmKt(old ) - m 0)]

0 elsewhere 

The precise effect of m.m^, on exceedances of a given acceleration at a 

particular site can be determined by adjusting the integration limits involving 

mmar an(^ possibly m^, m^ m^ in equation 26 or 34 and evaluating the integrals
1* 2

for the respective values. As illustrated in figure 5A and 5B, the relative effect of 

changing Tn.max on the exceedances of a given acceleration level is not. the same 

at different sites. The relative effect on different accelerations at the same site 

is also non-uniform (figure 5C). We shall give a heuristic argument why this is so. 

The highest acceleration ct max possible at a site is produced by a magnitude 

earthquake in which the rupture overlaps the point on the fault closest to
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Exceedances as a function 

mlo

io- 5
0 10 20 30 40 50 60 70 80 90100 
Distance (km) from center of fault

Figure 4. Acceleration exceedances as a function of mi0i P .
mi0 - lowest magnitude that produces acceleration Op at (X ,P}\ 7rLjTUlx = 7.5.
In this example, an Esteva attenuation, In Op = Cj + C m^, + c 3 lnP is used; the site is at 

(200.P); the fault extends from (0.0) --(400.0). For m^ fixed, the same magnitude range 
mj0 ^771 ^TTimax yields more exceedances of Op as P increases, or the site is affected by 
more earthquakes along the fault in a given magnitude range as the perpendicular dis 
tance from the site to the fault increases.

the site. In this case, = m. Occurrences of accelerations near a will

obviously be greatly affected by small changes in m mtvr . However, if an 

acceleration a t is considerably less than a max, then mnun is considerably less 

than mmax, and changing mmax by a small amount will have little effect on the 

exceedances of aj. That is, if m^^new ) is such that

T =
- 771

«1.
even including all the additional earthquakes at magnitudes 

m,ntiI(old}<Tn ^lmmax(7ieiy) does not substantially affect the exceedances of a lf
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Figure 5. Acceleration exceedances as a function of maximum magnitude.
A, B: Exceedances of .Ig and .5 g for sites at varying perpendicular distances P from the 

center of a 400 km fault.
C: Exceedances of various acceleration levels at a site 30 km. from the center of the

fault.



since earthquake occurrences decrease exponentially with magnitude and the 

large number at lower magnitudes (near m^n) will dominate. However, as m,^ 

increases (corresponding at a fixed site to a higher aj), small absolute changes 

in THjnim become larger fractional changes in r and cause correspondingly larger 

fractional changes in Ex (aj |//).

Now let a 1 = a max(olci) at a site. We shall look at how exceedances of a^

change when m^a^neu;) = mmilx(oZd) + Am at sites at (~,P} and (0,P).

Using equations 28 and 34, the incremental exceedances tJEx(ai\H) 

resulting from earthquakes in the range mmax(oZd)<m <mmai(neiu) is 

approximated by

n L~<-'"'   -" expfam)] Am 
L   H exp(<7 77i)

Q (43)

| ff )(ojp) - min

Q Ad Am
L  H exp(g m)

Q
(43)

f Ad = V/?i(m) 2 -/3d . (44) 
1 - exp[- 6 (m -m0 )J

Since Ri\rnmKt(old)] = Pt Ad is small when Am is small and the "break length

term" H exp(g TTI) may contribute most of the exceedances of a^ at ( tP}. This
id

term vanishes for a site at (O,/3 ). Thus at the highest accelerations possible at 

(X,P) the incremental absolute effect of a small change Am in maximum 

magnitude may depend upon rupture length and site location.

Some additional remarks may be made when the Esteva attenuation 

function, (equation 35) is used. In this case, the maximum acceleration possible 

at (X,P) increases exponentially with 771^^^. Now a max is that value of a for 

which

D , (45)
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where

P
CD =

and

^^^(ne-w ) = amax(o£d ) exp[c2(mmAT(new ) - mm&x(old ) )] . (46) 

If the acceleration range at a site is defined as

Ar=amax -a 0 (47) 

 where

lnao= Cj + c 2 7n 0 + c 3 lnCjD, (48) 

for sites at (X.Pj and (X,P2)

(49;

Because the maximum acceleration possible at the site decreases as P 

increases, the acceleration range becomes smaller as P increases. It follows 

that the effect nf maximum magnitude on acceleration aj at (X,P) depends 

upon where in the acceleration range aj lies for that site.

(4) Fault length.

Let the earthquake rate r per year per kilometer of fault be fixed. If the 

fault is short enough, adding fault length will increase the number of 

earthquakes that may be felt and hence increase the rate of exceedance of most 

accelerations at a site. Beyond some point, in this model, however, adding fault 

length will actually cause the exceedances calculated to decrease (to some 

limit). The length at which acceleration exceedances begin to decrease depends 

upon the site location, attenuation function, acceleration level and other 

parameters. The role of fault length may be explained as follows:

Consider faults of length L and length k L. where k > 1. Let the faults extend 

from (0,0)  (L.O) and (O.O)-(fc L.O) respectively. For simplicity assume the site

is either at (O^P), above the end of the fault, or above the midpoint at (   ,P) or
O

28



If the integral fan does not contribute to Ex(ai \H), the only quantities that 

change in equation 34 when fault length is increased are those involving fault 

length and rate, and since

rL > rkL 
L   H exp(j7 m) k L   H exp(p 771)

where r ^earthquake rate per unit of fault length

r L (or r k L )   total earthquakes along fault (of length L of k L ), 

the shorter fault will yield more exceedances of ai at (X,P) than will the longer 

fault.

On the other hand, if for both faults all earthquakes contribute to Ex(a.i \H) 

regardless of location (the only integral involved in both cases is /oii), then 

ruptures on the longer fault will produce k times as many exceedances of aj at 

(X,P} as will those on the shorter fault.

Figure 6A illustrates a case in which there are more exceedances of 

accelerations at all levels at a site near the center a short (100 km) fault than 

near the center of a longer (400 km) fault having the same rate of earthquakes 

per unit length. The situation is clearly reversed at a site further away (at a 

greater distance P) from the center of the faujt. figure 6B illustrates 

exceedances of a fixed acceleration at a site as a function of fault length where, 

again, earthquake rate per unit length is constant.
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fault
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Figure 6. Acceleration exceedances as a function of fault length when earthquake rate 
per unit length remains constant.

A: Sites 10 km and 100 km from the centers of faults 100 km and 400 km long.
B: Relative exceedances of .05 g at sites 100 km and of .5 g at sites 10 km from the
centers of faults that vary in length from 20 km to 1000 km.

(5) Rupture Length.

Kupture lengths for three magnitude rupture length relationships (for a log 

normal distribution with standard deviation CTJ = 1.20) are illustrated in Table 1. 

For each relationship, a great variation in length may be seen particularly at 

higher magnitudes between the longest and shortest ruptures for each 

magnitude.

Recall that the analysis thus far (equations 26 and 34) has assumed a 

constant value of fr

H -H(fr cri ) = exp(a + /T-CTJ)

and that fr is a stretching factor ruptures become longer at each magnitude 

as fr increases. Recall also that given fr. Tn-j(fr at ) is the magnitude above

28



Table 1.-Typical rupture lengths when variability is included in three magniluce-rupture 
length relationships. The standard deviation given by Bonillt and Buchanan (1970) 
crt = 1.20 is used for all three relationships. FT = 0 corresponds to the median rupture 
length. The other rupture lengths arc those for/r = ±l,±2 corresponding to lengths 
between the "short" ( 2crj) and "long" (+2^) extremes.

mag
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5

-2.0

0.3
0.4
0.7
1.0
1.6
2.5
4.0
6.2
9.7

15.2

1 -1.0
0.9
1.4
2.2
3.4
5.4
8.4

13.1
20.5
32.1
50.3

/r
0.0
3.0
4.6
7.2

11.3
17.7
27.8
43.5
68.0

106.4
166.5

I 1.0
9.8

15.3
24.0
37.5
58.7
91.9

143.9
225.2
352.4
551.4

2.0
32.4
50.8
79.4

124.3
194.5
304.4
476.4
745.6

1166.8
1826.0

k
i
1
o
m
e
t
e
r
s

A. Bonilla and Buchanan (1970) fit for world-wide surface faulting
(used extensively by McGuire)
ln(l}- -2.498-f .896m -f 1.20/r; (log 10 (Z) = -1.0B5 +.389m + .52/r)

mag
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5

-2.0 J
0.3
0.6
1.0
1.8
3.2
5.6

10.0
17.8
31.7
56.3

-1.0

1.1
1.9
3.3
5.9

10.5
18.7
33.2
59.0

104.9
186.4

/r
I 0.0

3.5
6.2

11.0
19.6
34.8
61.9

109.9
195.4
347.2
617.1

1_ 1.0
11.6
20.5
36.5
64.9

115.3
204.9
364.1
647.0

1149.8
2043.3

L 2.0
38.3
68.0

120.9
214.9
381.7
678.4

1205.5
2M2.4
3807.3
6766.2

k
i
1
o
m
e
t
e
r
s

B'. A relationship used (with/r = 0) by Der Kiureghian and Ang, 1977, in their 
risk analysis ln(l} = -3.350+ IJSOm -f 1.20/r

mag.
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5

-2.0

0.0
0.1
0.1
0.2
0.5
1.1
2.4
5.1

11.0
23.5

-1.0

0.1
0.2
0.4
0.8
1.7
3.7
7.9

17.0
36.3
77.7

/r
0.0
0.3
0.6
1.3
2.7
5.8

12.3
26.3
56.3

120.3
257.3

L i-o
0.9
1.9
4.2
8.9

19.1
40.8
87.1

186.3
398.4
852.0

2.0
3.0
6.5

13.8
29.5
63.1

134.9
288.6
617.0

1319.4
2821.1

k
i
1
o
m
e
t
e
r
s

C. Curve A of "Wallace, 1970. Earthquake recurrence intervals 
in the San Andreas fault (used by Algermissen and Perkins, 1976).

ln(l)= -7.370 4- 1.520m + 1.20/r
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which all earthquakes regardless of location on the fault contribute to 

Ex[a.\ \H(fr tr^)] at a specified site. As fr increases and ruptures become 

longer at all magnitudes m.j(fr ut ) decreases, and

my( 'UCTj) >7Tlj(/r ) >77T,j (u Oj),   TJL <fr <U . (50)

As rrij(fr ui) decreases, a higher fraction of earthquakes along the fault 

contributes to exceedances of a^. Because all earthquakes at magnitudes 

m >T7ij(-u oj) contribute to Ex[ai \H(fr o"/)] for all   u<fr^+u. the 

difference in Ex[(ai \H(fr cr^)] as a function of H(frai) is due to earthquakes 

having magnitudes m <TTIJ(~U <TJ). In the extreme case, if m^ u. o^^-m^^, all 

earthquakes contribute to Ex(a\) for all magnitudes m^mjnin and all rupture 

lengths.

Table 2 illustrates for TninQJ.-%Sii 77iio = 6.0, at a site above the center of the

fault (at X~- }, the value of 7n.j(fr cr^) for fr  2., 0, 4-2 (short, median and

long) break lengths ^as a function of distance P and fault length L. As shown, 

rrij( u <7j) decreases as P increases, indicating that for m^ fixed, rupture length 

has less effect at more distant sites.

However, in many cases of interest, particularly for sites nearer the fault, 

loll does not contribute and rupture length is quite important. We can see 

precisely how break length affects the exceedances of aj, that is how Ex(a.i ]H) 

varies as a function of H, provided that rupture length remains less than fault 

length for all magnitudes and Iaii is zero or negligible relative to the other 

integrals in equation 26 or 34.

In this case the denominator [L   H exp(y m)] can be expanded in a series 

and the corresponding integrals in equations 28 and 34 approximated by a sum 

of terms. Using

-Z + Z 2 + Z* + ..) (51)
L-ffexp(gm) L tl _ ^exp(y m )] L(l-Z) L
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Table 2 Example showing magnitude limit ^n^ as a function of fault length, rupture length ajid di-

tance from the site to the fault.
Al each site, for a given value of 7TLj0 . there is an acceleration which is produced only by magni 

tudes TTii0 £m. At magnitudes m^ £ m ^7nmaa . all earthquakes on the fault regardless of loca 

tion will contribute to that acceleration. As 771^ decreases, the fraction of earthquakes yielding the
1 £ 

acceleration increases. Tabular values are for sites at \~,Pj above the center of a fault L km long.
t*t

for short, median and long ruptures, that is for fT =   2, 0, +2 in the rupture length-magnitude re 
lationship of table 1A. 
TnmaI =B.5. mjo =6.0. AttenuaUon function: In d = 3.4 +. 89m - 1.

t -
100
200
400
BOO
1600

10
7.90
6.50
B.50
8.50
B.50

20
7.19
8.01
8.50
8.50
8.50

30
6.81
7.56
8.41
8.50
B.50

/ 
40
6.57
7.25
8.07
B.50
8.50

3 (km) 
60
6.32
6. 84
7.6O
8.46
8.50

80
6.20
6.60
7.27
B.ll
8.50

100
6.14
6.44
7.04
7.B4
8.50

150
6.06
6.23
6.66
7.36
B.20

200
6.04
6.14
6.45
7.05
7.B5

300
6.02
6.07
6.24
6.67
7.37

fr=Q

L
100
200
300
800

1600

10
6.76
7.53
B.32
8.50
8.50

20
6.52
7.23
8.03
8.50
850

30
6.36
7.00
7.7B
8.50
8.50

/
40

6.26
6.82
7.58
8.41
B.50

3 (km) 
60

6.14
6.57
7.26
8.08
8.50

BO
6.09
6.41
7.03
7.82
B.50

100
6.06
6.30
6.85
7.61
8.46

150
6.03
6.16
6.55
7.22
B.04

200
6.02
6.10
6.37
6.95
7.73

300
6.01
6.05
6.20
6.61
7.29

fr=+2

L
100
200
400
800
1600

10

6.00
6.00
6.02
6.76
7.54

20

6.00
6.00
6.01
6.72
7.49 ^

30

6.00
6.00
6.01
6.69
7.45

} 
40

6.00
6.00
6.01
6.65
7.41

° (km) 
60
6.00
6.00
6.00
6.58
7.34

BO

6.00
6.00
6.00
6.53
7.27

100

6.00
6.00
6.00
6.47
7.20

150

6.00
6.00
6.00
6.37
7.06

200

6.00
6.00
6.00
6.29
6.93

300

6.00
6.00
6.00
6.18
6.73

we have

NT f

where

NT /  
f

and

(52)

( ) exp(n g 7n)dm , (53) 
Li

31



Nt I     x *t-*r  *- dm K 2_,Jn\") (54) 
;> o Z,-expfom) n%

H m^ ^ n 
rn (//)w//7t   J exp[ (6 -f y)77L] (-T-) exp(n g m) dm (55)

and

6 exp(6
r / v - exp[-o (mmax - m 0 ) J

Using these relationships, from equation 34. for a site at (  ,P),
M

, « 2/n (/7) + S^n(^) (57)
Z' } n=0 n=0

and from equation 26. for a site at (0,P),

(58)
^n=0

For the Esteva attenuation function (equation 35). under certain conditions, the 

7n (H ) terms are of the form

/ (#)=        fc,^         - f w   dw (59)
r( 6 ^ + 1) o

C

(See Appendix F for definitions, derivation and discussion.) 

The first term of I0{H) involving gamma functions

r<7 + l>
C <,

is equivalent to (yrithin a normalizing factor ) Cornell's (1968) result for 

earthquakes regarded as point sources (zero length ruptures) occurring on an 

infinite fault with infinite maximum magnitude. The second term of 7 0 corrects 

for the fact that a finite maximum magnitude is assumed. Since R\(jnTna .L } is a 

function of acceleration as well as magnitude, at the highest accelerations at a 

site. /? 1(771 max) can be very close to P. In this case, the correction may be nearly 

as large as the Cornell term. However, if R i(77x mai) is large compared with P,
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then is small and the correction for finite maximum magnitude is

small.

While the IQ term gives acceleration exceedances for point sources, the Jo 

term gives the extra exceedances due to rupture length. The higher order 

terms Ik (H}, Jk (H). 0<k, give the correction to the "point source" and 

"rupture length" terms due to to the fact that the fault is not infinitely long and 

ruptures must be wholly contained "within the fault.

If the denominator is originally L (as in the Der Kiureghian and Ang model) 

instead of [L  H exp(g m)] only the term k   0 is required. The Ik (H}, Jk (H} 

terms for k >0 give the difference in exceedances calculated by the two models

for a site above the center of the fault at ( ,P). For a site at (0,P) for the
C*

model of Der Kiureghian and Ang, Ex (0.1 \H ) is given by Ex(a^\H}     (/0 -f- J0).
£*

(See equation A15, Appendix A).

Some sample results for four sites and several values of a^ and fr are given 

in Appendix D for an Esteva attenuation. We have assumed in equations 53 and 

55 that the integral faLL is not present, that is that mj(fr CTJ) ^m^^. In 

Appendix D we have relaxed the restriction that 77i rnax >7nJ-(/r cr^). changed the 

integration limits in equations 53 and 55 from m^a* to mj(fr (jj) and added in 

the contribution (if any) from 7aH . Contributions from/ 0> / lp JDi and 7aii plus 

the five-term total ("Sum" column) are shown. The column marked "analytic" 

gives the results obtained by evaluating the original integrals by Gaussian 

quadrature. "Sum" may be seen to give a good approximation to the "analytic" 

result for the usual break lengths, becoming less accurate as fr increases to 

correspond to extremely long breaks.

Note that even when fr   0 (median break length) J Q the principal "break
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length term" may be larger than /Q the "point source approximation" and cannot 

be neglected. Hence treating earthquakes as point sources can give results 

quite different from those obtained when rupture length is taken into account, 

and the term 7 0 gives a good approximation to the sum only under some 

conditions. The differences are particularly dramatic when longer ruptures are 

permitted.

Between fr =  2 and fr = + 2. (short and long extremes of rupture length), 

Ex[ai \H(fr 0j)] may vary by factors as high as ten or twenty or more. 

However, the "extreme" situations corresponding to very long or very short 

break lengths occur infrequently and the real interest Lies in the result of 

integrating over break length weighted by probability of occurrence, that is in 

the expected value Ex(a,^).

We shall investigate the effect of integrating over break length and show that 

exceedances of Ex\ja,\ |/f(0)] calculated using only the median (fr = 0) length 

tends to underestimate the integrated Ex(ai). That is, longer ruptures have a 

greater effect than their frequency of occurrence might indicate, and indeed the 

mean rupture length (which is greater than the median length) more nearly 

approximates the integrated result. We shall show this using an approximation, 

which is valid when the length of all ruptures r.emains less than the fault length, 

and when rrij(fr oj) <mmal for all fr considered.

Rupture Length Integration

The normal probability integral has limits that extend from  » to +°°. The 

formula for rupture length as a function of magnitude

6 m = exp(a +g m + fr 0j)

would result in an unbounded length if fr were permitted to increase
/

indefinitely. Obviously such long ruptures are impossible and so we shall 

truncate the distribution assuming all ruptures occur for fr within some range
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, -where -u is of the order of say 1.5 or 2. The denominator of 

equation 60 is -a renormalization to correct for the fact that the integration 

limits are  u trj ~to -4-u <7j~rather than   °° to +°°. 

Integrating -over break length gives

(60)

Ji (y) = exp(a -t-jy}, y   J"r o-4 (see model assumption 2.) 

ai) may "be calculated directly by integrating equation 26 or 34 for 

(y^ and then numerically integrating over H (y). However, when the 

series expansion of equations 53 and 55 for /n [^(v)l an(i ^nL^(y)] ^ s valid, 

(rupture lengtti -remains less than fault length throughout and rrij   mmax) the 

integration over H(y) may be performed analytically for each n. Since the 

integrals Jy&H (y}], Jn [H(y )] are °f the form

(61)
171 min

(62) 

the integration over y of 7n [/f(y)] may be written

- - u ff, -4-u cr.

/;
(63)

J p(y)dy f

and similarly fpr « 

It can be shown that
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4-u a, -I 2

(64)

/exp(
 U «|

Instead of actually integrating over y (or fr aL ) we may find a single value of 

y that gives the same result. By the mean value theorem, there is a value y 0 in 

the range -u oi £ y 0 ^ + u ui SUC Q toat

T(Hn ) = H(y D)n = exp(a+frn al ) n . (65) 

Equations 64 and 65 for T(H*) can be solved for frn . Table 3 presents

values of frn for a^ =1.20 and UL =.30 and integration range -1.5 £fr ^1.5, and

Table 3
ui - 1.20

u=1.5 u=2.0

n
1
2
3

frn
.313
.554
.721

f*n

.438

.774
1.005

. * <jt =.30
u=1.5 u=2.0

71

1
2
3

frn
.082
.163
.240

fr-n

.115

.228

.337

These results enable us. when the series expansion is valid, to write for a site

fr.
7+

n=0
(66)

areBut since 0 < fr l < fr z <--. and since. /n [//(/raz )] and Jn

increasing functions of /rn , using frn =fr l in equation 68 does not overestimate

Ex(a l).

For n - 1. r(-tf) represents a first moment and /TJ is such that 

T(H)exp(g -m) = exp(a + g m f/rja/) equals the mean rupture" length. Hence 

using only the median length (or length corresponding to fr =0. the mean of 

the log of the rupture length) gives a lower value and therefore a worse

approximation to Ex (a i).

Tables in Appendix E evaluated at rupture lengths corresponding to various
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values of fr illustrate Ex[a^ \H(fr o-t )] when a single length is used for each 

magnitude and show the integrated result Ex (a i). In many cases a single length 

corresponding to /r t gives a good approximation to J?x(a 1 ), even when the 

conditions used in developing the series expansion are not met completely. 

Thus, for example, for it = 1.5, cr^ - 1.20, Ex[a\ |//(.313<jt )] evaluated for the 

single break length corresponding for fr =.313 (the mean length for lengths in 

the range to ±1.5oj ) frequently gives a good approximation to the integrated 

result, while the median fr = 0 length underestimates Ex(a.{). Since integration 

over break length is time consuming (numerical integrations in SE1SRISK II and 

FRISK use four or fivne lengths per magnitude) a considerable savings results if 

one rupture length per magnitude suffices. Figure 7 illustrates acceleration 

exceedance values at three sites when very short (point source), median length 

and mean length ruptures are assumed.

Essentially the same arguments may be made when the Der Kiureghian and 

Ang model, which requires ruptures to have their midpoint on the fault, is used. 

The denominator then is L instead of [L   H exp(p m)] and only the principal 

"break length term" JQ need be integrated. (The /Q term is independent of 

H(y).) Formulas for this alternate model are developed in Appendix A.

Probabilistic Accelerations.

Thus far we have associated a single value of acceleration with each 

magnitude and distance, when actually, accelerations have some distribution of 

values, and should be treated probabilistically. The computer programs 

SEISR1SK II and FRISK assume accelerations are lognorrnally distributed around 

their median values, that is around the mean value of the log-acceleration with 

standard deviation (in log-acceleration) cra . Note that cra is regarded as 

constant, independent of magnitude and acceleration.
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Site at(200.10)

Yearly exceedances as a function of rupture length.

10-5

1 10 100 
Acceleration-percent gravity

10-1..

Site at(300.40)

10-5

1 10 100 
Acceleration-percent gravity

icr 5. 4 i i i 11111  i i i i mil  i i i i 11 ii 
1 10 100 

Acceleration-percent gravity

Figure 7. Acceleration exceedances at three sites as a function of rupture length. The 
curves labeled fr     5 give exceedances "when very short rupture lengths (almost point 
sources) are used; the curves fr=0 correspond to median length ruptures and those for 
fr = .3 to mean length ruptures for crt   1.2 (in lne ).

The fault extends along the x axis from (0,0)-(400.0); magnitude range is 
4.05771^7.5

Under this assumption, using earthquake rate = 1, the probability that a 

random earthquake in the range m^^^m = Tn meiZ will cause acceleration do to 

be exceeded at (X,P} is

n / N . Pex(a 0)= J p
, . 

pr(a)da

where y>   complement of the cumulative normal distribution

(67)



ajnjn = lowest acceleration for which pr (a) -5 0 at (X <P) 

a xn*L = highest acceleration for whichpr(a)^0 at (X,P) 

PT(CL)   density of median acceleration a at (X,P). 

The inclusion of acceleration variability may significantly affect acceleration

exceedances. Figure 8 illustrates exceedance values at three sites for median

length ruptures for several values of cra (where C7a = 0 represents no acceleration

variability).

In order to gain some insight into how acceleration variability affects the

expected exceedances of a 0, we shall show that Pex(a 0) can be expressed as the

sum of two terms

a ) , (68) 

where

j?x(a.0)   probability that acceleration 0.$ is exceeded

assuming median acceleration values 

7? (a 0jO'a j = additional exceedances of ac due to

acceleration variability. 

To show this, note that

Pex (a 0) w Ex (a 2) + f V*
In a. 0   In a . . . . 

pr(a)da (69)

where

lnaj = Ina 0 -7i cra (70)

Ina2 = ln a 0 + n cra (71)

for some number n of standard deviations from a 0. (Accelerations \\ith log-mean

values a<aj are ignored in this approximation.)

Next, letting w = In a   In a 0 and using the relationship y>* ( x ) = 1   ̂ ?* (x ) yields

. (72)

nff"   w \ 1 ao f P*(    ) )exp(-u;) pr[a 0exp(-w)] - exp(iu)pr[a c exp(-u; )][ dw
*^_ *T_ 1 I
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Yearly exceedances as a function of sigma (accel)

Sile at (200. 10) J  >

1 10 100 
Acceleration-percent gravity

10-U

1 10 100
Acceleration-percent gravity

1 10 100
Acceleration-percent gravity

Figure 8. Acceleration as a function of cr0 , standard deviation in log-acceleration (using 
median length ruptures) at three sites; cra = 0 corresponds to using only the median 
value of log- acceleration. (Values of (70 shovm represent variability in the natural loga 
rithm of acceleration, In^ (a).)

The fault extends along the r-axis from (0,Q)--(400,0); magnitude range is 
4.0 ^ m* 7.5.

Thus, the effect of acceleration variability on the probability of exceeding 

acceleration O.Q is related to the difference in acceleration density at 

acceleration levels a 0 exp( -us) and a 0 exp(u>) for D^w ^n tra .

At the higher accelerations possible at a site, including variability can have 

particularly dramatic effects on the expected exceedances. Since a^-, = highest 

acceleration for which pr(a)>Q at (X,P). j>r[a 0 exp(u?)] = 0 whenever
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a 0 exp(-u/)>a TOftT . There may, therefore, be a dearth of acceleration densities to 

subtract off at the higher accelerations at a site. If ao^ct max, the second term in 

the integral in equation 72 vanishes, but the first term will continue to 

contribute whenever tZmin^ o-oexp( w) ^a-m**. This corresponds on the high end 

to accelerations aQ^aln&x exp(7i aa ). Thus, the highest acceleration felt at (X,P) 

increases by a factor exp(n CTO ) and there will be exceedances of all 

accelerations below o. rnax exp(n cra ). Similarly, restricting magnitudes to mo^m 

affects accelerations that would be produced by magnitudes m <77i 0 , causing, in 

some cases, Pex(aD) to be lower than it would be if magnitudes m<m0 were 

permitted.

Formulas for the density pr(a) are derived in Appendix C for the Esteva 

attenuation and fcr model. It can be seen that there are a number of different 

expressions depending on magnitude limits m^,, m^in, TTI^, m^ , TTX^ and the site 

location. Since the magnitude limits are a function of acceleration, several 

different expressions for pr (a) may be required over the range a-i ^ a ^ a2. This 

makes a detailed analysis quite difficult. (A numerical derivative

, N -[Ex (a+ c)-Ex (a)] . , , , . .. , 
PT(CL) = L  ^   *   * LJ- may, of course, be used for computational

w

purposes.)

One situation, which is easy to analyze, occurs when the site is at a distance 

/? from a point source, and the Esteva attenuation is used. (The point source 

case is equivalent to the case when only the integral 1^ contributes to 

exceedances of a0; that is, all ruptures regardless of location on the fault 

produce accelerations a <? a 0 .) In this case, as shown in Appendix B, a single 

expression forpr(a) is valid throughout the range and

  ~)]dw (73)Pex(a 0) = Ex(a n) + k^a. n 8 J<p*

n »r ,u cra
cra / y> (w) sinh(

o C 2



where

T m 0)J

so long as a,^^ aj , a 2 ^ ctn^ (equations 69 and 70).

(74)

For thia situation,

a) Pex(ao) increases as aa increases (obvious since sinh(:r) increases as x 

increases.)

b) For fixed ora . the integral in equation 73 is constant so that Pex(a 0) is of the 

form

- JL 
Pex (a 0) &Ex(a 0) + ac °a -constant. (76)

An expression for Pex(a 0) for the point source case was derived by Cornell 

(1971). A different derivation is given in Appendix B.

Applications

Tables in Appendix E illustrate how acceleration exceedances of 100 gals 

(.lg) vary as a function of rupture length and site location for an Esteva-type 

attenuation with parameters

ma =3.4 + .89m - 1.171ri/? (77) 

using both the fcr model (denominator [L   H exp((jr m)], and alternate model

(denominator L)', and for the Schnabel and Seed (1973) (SS) attenuation curves 

using the fcr modeL The tables are provided only to indicate some general 

behaviors of the the models and to provide some comparisons between them. 

The actual numbers depend, of course, on specific parameters (6 -value, fault 

length, attenuation, rate, and so forth), and are not significant; only relative 

values are of interest. The tables show Ex\a. \H(fr o^)] for several values of fr 

(short to long rupture lengths), Ex(a} (exceedances integrated over rupture 

length), and Pex [a. \H(j~T aj)], (exceedances when acceleration variability is
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included, fr fixed).

Column headings in the tables below and in Appendix E represent the X- 

coordinate. row headings the P-coordinate of a site at (X.P). The fault extends 

400 km along the x-axis, 0^x^400. Magnitude range is 4.0 ^m ^7.5 for 

exceedances of 100 gals; 4.0 £m ^ 8.5 for exceedances of 500 gals.

(1) Site location differences.

For a given model and attenuation function, and for the P-coordinate of the 

site fixed, Ex[a. \H(fr oj)], Ex(a) and Pez[a \H(jr <TI )] tend to change 

considerably at sites near the end of the fault a few kilometers apart in the x- 

direction. For P = 10, a site at X = + 10 (km) tends to have exceedance values 

that are two to four times as large as those at a site at X     10 (km). The 

difference decreases as P increases, but generally the values remain larger by 

at least a factor 1.5 or 2 for P < 65. (See Appendix E.)

Figure 10 illustrates acceleration exceedances, for the attenuation in 

equation 77, at a number of sites having the same P -coordinate and different X- 

coordinates. Figure 10A assumes minimum magnitude m0 =4.; figure 10C 

assumes rriQ = 1.

The sharp decrease in acceleration exceedances calculated for a site a few 

kilometers past the end of the fault compared with those calculated for a site 

near the end of the fault may be an unrealistic consequence of the model.

(2) Model Differences:

Tables (4) and (5) illustrate the ratio of Ex (a} obtained using the fcr model 

(ruptures wholly contained within the fault) to Ex (a) calculated at the same site 

for the alternate model (in which only rupture midpoints are required to be on 

the fault) for a = 100 gals and a = 500 gals. (Zero ratio implies that the 

acceleration is not felt at the site for at least one model.)
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Yearly exceedances as a functionof x-coord of site location

10-'

ID" 5

1 10 100 
Acceleration-percent gravity

1 10 100 
Acceleration-percent gravity

10- 5-

1 10 100
Acceleration-percent gravity

Figure 10. Acceleration exceedances as a function of the X-coordinate of the site for a 
fixed P -coordinate; mmax :=7.5. In (A) and (B) m0 = 4.0; in (C) m 0 = 1.0. The fault ex 
tends from (0,0)-(400.0).

It may be seen that, at 100 gals (.lg) for sites perpendicular to the center of 

the fault (^=200), both models give very similar results at*lower P values, with 

the relative difference or ratio increasing as P increases. As the ^-coordinate 

of the site is shifted parallel to the fault past the end of the fault (as X 

decreases from X 20Q to A^-50), the alternate model begins to give higher
r

results (about the same at A""=50) and increases with decreasing X until at 

X  50 it gives values that are three or four (or more) times as high as the fcr
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Table 4

P
10
20
30
40
50
65
80

100

goo
1.06
1.10
1.14
1.17
1.20
1.22
1.24
1.29

Ex(l

100
1.04
1.07
1.08
1.08
1.09
1.10
1.11
1.15

L00)/cr

50
1.01
.99
.flfi
.95
.95
.96
.96
.95

/Ex\
X

10
.84
.80
.79
.79
.80
.80
.79
.68

[100)

0
.71
.71
.72
.73
.74
.74
.72
.56

iLt

-5

.61

.65

.68

.69

.70

.70

.67

.49

-10

.53

.59

.63

.65

.66

.66

.63

.41

-50

.32

.32

.33

.33

.32

.27

.17

.00

Table 5

P
10
20
30
4O
50
65

200
1.25
1.30
1.27
1.25
1.24
.00

Ex(

100
1.13
1.15
1.16
1.16
1.16
.00

500) ro

50
.93
.95

1.01
1.03
1.04
.00

r/Ex

X
10
.59
.68
.81
.87
.88
.00

(500)

0
.43
.57
.73
.80
.81
.00

alt

-5

.32

.50

.67

.75

.75

.00

-10

.25

.43

.60

.68

.64

.00

-50

.04

.04

.00

.00

.00

.00

model. At X =-50, (where the ratio in table 5 is zero, .Ear (500) = 0 or not felt in 

the jfcr model), £lar(500)(_50>Jp) is as high as 10%-35% of the value of Ex (500){200>p) 

in the alternate model. In the alternate model, for P fixed, Ex\a \H(fr CTJ)] and

Ex (a) tend to be almost exactly twice as high at X =   as at X = 0, since the
Ci

fault is treated as the sum of two independent segments of length  . In the

fcr model, the difference is closer to a factor 2.5 or 3.

Thus while the model makes relatively little difference in the calculated risk 

at lower accelerations for sites above the fault, the choice of model can have a 

substantial fractional effect on exceedances calculated at sites some distance 

away beyond the end of the fault. However, the absolute values of the numbers 

may become very small, and large fractional differences may be unimportant. 

Thus, in examples for .Ex (500), a tabular value of 100 for the assumed rate of 

T   .1 earthquake per year corresponds to a return period of 100,000 years, and 

changing the result by a factor ten may have little influence on the earthquake
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hazard assessment.

(3) Attenuation function.

Table (6) illustrates the ratio of Ex(WO) computed using the for model with 

the Schnabel and Seed attenuation curves to Ex(lOO) for the same model and 

the Esteva attenuation (equation 77). Comparison is complicated by the 

inclusion of d=depth in equation 77 where R Z = X Z + P Z, and P z =Y* + d z, 

whereas in the SS equations, P = Y. Tables shown assume d = 0. but major 

discrepancies and shape differences remain, even after changing depth or 

shifting in the P direction. (The ratios reflect the difference in the attenuation 

assumed at distances other than those where the predominant number of 

significant strong-motion records are available.)

At a = 500 gals, the Schnabel and Seed curves give nonzero exceedances only 

to P   10, whereas the Esteva attenuation gives some exceedances to P   50 (not 

shown).

Table 6

P

10
20
30
40
50
65

200

.43

.97
1.27
.97
.67
.39

Ex

100

.42

.98
1.30
.98
.66
.38

(lOOfe

50

.39

.97
1.35
1.00
.65
.37

S/Ex{ 
X
10

.34

.95
1.30
.92
.59
.31

:ioo)^s
0

.45
1.02
1.22
.84
.56
.27

leva

-5

.61
1.08
1.15
.79
.54
.25

-10

.82
1.13
1.07
.73
.51
.22

-50

.43

.38

.31

.19

.07

(4) Effect of integration over rupture length.

Tables in Appendix E show Ex(a) integrated over  1.5 <fr < + 1.5, and 

Ex\a \H(fr CTJ)] ranging from low ( fr =  2) to high (fr = +2) values (very short 

to very long break lengths). As previously noted, there may be a difference in 

exceedances of factors of ten or twenty between the extremes. As discussed in 

the text, for a^ = 1.20. a single value of fr, (/r=.313) gives a good 

approximation to the integrated result in many cases. Ratios
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for /r=0,/r = .313 are shown below in tables 7-10 for

a = 100, 600 gals, for the fcr model using equation 77.

Table?

U 100)1/7(0^)]

p
10
20
30
40
50
65
80
100

200
1.14
1.17
1.19
1.21
1.22
1.23
1.25
1.35

100
1.13
1.14
1.14
1.13
1.12
1.12
1.13
1.14

50
1.10
1.08
1.06
1.07
1.08
1.12
1.17
1.24

10
1.01
1.03
1.06
1.09
1.11
1.16
1.21
1.34

0
1.02
1.04
1.07
1.09
1.12
1.16
1.22
1.37

-5

1.03
1.05
1.07
1.10
1.12
1.17
1.23
1.39

-10

1.04
1.06
1.00
1.10
1.13
1.18
1.24
1.41

-50

1.15
1.16
1.17
1.19
1.22
1.27
1.38

Table 8

p
10
20
30
40
50
65
80
100

200
1.01
1.01
1.01
1.01
1.01
.99
.97
.98

100
1.00
1.00
.99
.99
.98
.98
.98
.96

m

50
.99
.98
.97
.99

1.01
1.04
1.08
1.13

X
10
.98

1.01
1.02
1.04
1.05
1.08
1.12
1.22

0
1.01
1.01
1.03
1.04
1.06
1.08
1.13
1.25

-5

1.01
1.02
1.03
1.04
1.06
1.09
1.13
1.26

-10

1.01
1.02
1.03
1.05
1.06
1.09
1.14
1.26

-50

1.08
1.08
1.09
1.11
1.13
1.17
1.26

Table 9

Ex (500)^,^ «i/Ex [500 1 // (Ocri ) ] 
X

JP__ 
10
20
30 
40 
50

200
1.39 
1.28 
1.12 
.98 
.89

100
1.28 
1.21 
1.18 
1.20 
1.22

50
1.11 
1.25 
1.45 
1.55 
1.63

10
1.17 
1.52 
1.92 
2.21 
2.63

0
1.27 
1.69 
2.23 
2.68 
3.47

-5

1.40 
1.85 
2.47 
3.04 
4.21

-10

1.62 
2.10 
2.79 
3.48 
5.27

-50

13.77 
21.91

Table 10

P
10
20
30
40
50

E

200
1.02
.91
.79
.70
.68

z(500

100
.98
.94
.95
.93
.88

W*

50
.92

1.10
1.19
1.19
1.17

u,d/£a 
X

10
1.10
1.31
1.55
1.68
1.88

:[500|

0
1.16
1.44
1.78
2.02
2.46

-5

1.26
1.56
1.96
2.28
2.98

iTl)]

-10

1.41
1.74
2.19
2.59
3.71

-50

9.67
15.14
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Cases in which the ratio
(a) < 1 result when all earthquakes

contribute and Ex[a \H(frva )] is a constant for all fr > frv , for some frv <u. 

In this case, the mean value Ex(a) must be less than the value Ex[a \H(frv PI )] 

and must occur at fr <frv .

r» f \

The large ratios, those cases where   p . \, '  r^-» 1 occur when only
Ex[a\H(frui)\

magnitudes near mmax contribute to exceedances of a, ft i(m)   P 2 is small, and 

most of the contribution to the integrated result is due to the effect of long 

ruptures.

Table 11

P
10
20
30
40
50
65
80

J.OO

Pe

200
1.34
1.82
1.87
1.94
2.05
2.39
3.24

11..34_

x[lOO].

100
1.34
1.84
1.90
1.98
2.12
2.48
3.36

. U-22

tf(.313c

50
1.35
1.90
2.01
2.14
2.33
2.80
3.89

14-07 .

'!)]/£*
X

10
1.34
2.13
2.24
2.33
2.53
3.10
4.55

£0,58

[100|£

0
1.53
2.13
2.23
2.37
2.60
3.25
4.92

25.52

'(.313oi

-5

1.82
2.24
2.33
2.49
2.74
3.46
5.32

30.56

>]
-10

2.08
2.27
2.38
2.55
2.82
3.61
5.69

37.50

-50

3.19
3.35
3.63
4.12
4.98
7.99

22.17
1.7.66

Table 12

Ex(lOO)ss/Ex(WO)Esteva 
X

P
10
20
30
40
50

200
1.49
1.49
1.59
1.95
3.62

100
1.52
1.61
1.88
2.36
4.12

50
1.64
1.94
2.12
2.59
4.69

10
2.04
2.06
2.29
3. 02
6.35

0
2.02
2.10
2.42
3.34
7.78

-5

2.11
2.23
2.61
3.73
9.68

-10

2.16
2.33
2.80
4.21

12.68

-50

21.45
53.73
15.22
12.02
9.12

(5) Effect of integration over acceleration variability.

The integration over acceleration gives a value Pei{a) larger than the 

corresponding Ex(a \H{fr at )] obtained using just the single mean peak 

acceleration, and allows higher accelerations to be felt at (X,P). Both the 

maximum possible acceleration and Pex(a) tend to increase at (X.P) as cra 

increases. Tables 11 and 12 give Pex(a \H (/raa )] for several situations and



illustrate these efTects.

The large ratios may be explained as follows: ]f ameji = acceleration at (X,P} 

resulting when an earthquake of magnitude TTL^^ occurs on the fault as near as 

possible to the site, Ex(a) = Q for a > a ma^, and including acceleration variability 

means that some of the exceedances of lower accelerations are "spread 

upward", possibly causing Pex(a) > 0 even though Ex (a} = 0.

Conclusions

Maximum and minimum earthquake magnitude, fault length and rupture 

length may have important efTects on the calculated exceedances of an 

acceleration level; however, these efTects vary with site location and 

acceleration, and generalizations based upon looking at a particular site or 

acceleration may be misleading.

For sites perpendicular to the interior of the fault, acceleration exceedance 

values obtained using mean length ruptures for each magnitude may be three to 

five times as high as those obtained using point sources. For sites beyond the 

end of the fault perpendicular to the extended fault line, the ratio may be 

considerably less, depending in part upon whether rupture length is large 

relative to fault length at some magnitudes. If a log-normal distribution of 

rupture lengths is assumed, a good approximation to acceleration exceedance 

values calculated by integrating over rupture length is generally obtained by 

using only the mean rupture length for each magnitude. It is emphasized that 

the mean length is longer than the median length (or mean log-length) which is 

frequently used in calculations and gives lower values.

Assumptions regarding maximum magnitude have a large effect on the 

higher accelerations calculated at a site, but may be unimportant at the lower 

accelerations. The minimum magnitude cutoff may cause a loss of exceedances 

of some accelerations. If there were no magnitude restrictions and infinite (or
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semi-infinite) fault lengths were permitted the exceedance curves would vary 

more smoothly as a function of acceleration.

Exceedances of an acceleration level may be two to five times as high at a 

site near the center of the fault as at a site near the end at the same 

perpendicular distance P from the fault. Sites beyond the end of the fault are 

particularly sensitive to site location, a change of 10 km in the x-direction 

resulting in up to a factor two change in exceedances of a. As P increases, 

accelerations become less sensitive to the X-coordinate of the site.

This model and that of Ang and Der Kiureghian give similar results for sites 

near the center of the fault. Relative differences in exceedances of a calculated 

using the two models become larger as the distance from the fault increases and 

as the acceleration level a increases.

Different attenuation functions can yield very different acceleration 

exceedance values. The fractional difference in exceedances of an acceleration 

calculated using two attenuation functions is not the same at different sites. 

Including acceleration variability rather than assuming a single value of 

acceleration for each magnitude and distance will cause a significant increase in 

the higher accelerations at a site. Depending upon the attenuation function, 

including variability if <ja is large may have a greater effect on the acceleration 

exceedance values than effects of including rupture length. Attenuation 

function effects can and should be distinguished from model effects.
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Appendix A

Derivation of Ex(a^ \H) for the rupture model of Der Kiureghian and Ang (1975). 

This rupture model requires only that the rupture midpoint be located on 

the fault; the rupture is permitted to extend by one half its length beyond the 

end'pf the fault and thus rupture length may be twice the fault length. The 

derivation of Ex(a l \H) for this case parallels the development of equations 28 

and 34 for the fcr (fault contained rupture) model, and we assume familiarity 

with the notation and derivation of Ex(a l \H) for the fcr model. As before, 

earthquake magnitudes are restricted to m 0 ^m ^ m^,,

771^   lowest magnitude that can produce acceleration af at (X t P)

""T-min   n1 ax(7n 0. ""T-lo )

5m - jy exp(y m) = rupture length for magnitude m ruptures. 

Again, two cases will be considered.

Case 1. A"<0 (Site beyond end of fault.)

Let ii(m) be the point on the fault which is at distance /?i(m) from (X.P):

(Al)

If (l.O) is any point on the fault, (0^1 ^L), all ruptures with midpoints I -Zmid on 

the fault for whicb ,

m-!--- (A2)

will contribute to Ex(ai I//). The lowest magnitude mlo that could produce a l at

the site is the magnitude at which XL (m) 4-       0. "Set 77i r.lin = max(77i 0 ,7TLic )
<w

Assume rn.^ < m max . ( Otherwise Ex (a j | //) = 0.)

There is a magnitude m, above which all ruptures regardless of location on

 » 
the fault wilt yield a ^ af. this is the magnitude mm for which

(A3)

where
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m> 2L) (A4) 

(that is, if rupture length 6m would exceed twice the fault length L , rupture

length is set equal to twice the fault length). Then

(A5)

for a unique 771=771, since both 6r(m) and R 1(771) are nondecreasing as m 

increases. Set

The fraction of earthquakes of magnitude 771 which yield a > a l at (X, P) is

pr(a ^ O.JJ //.m) =

0

771 ^

(A7)

<771 ^

Thus for^<0,

(A8)

-exp(g m)
j exp(  6 77i )              -              dTTi + r exp(-6

"S»

(Either integral may have a zero range of integration.) 

Case 2. Q*X£~ (Site "above" fault.)
4w

For a magnitude TTI earthquake all ruptures with midpoints Z mid in the range

> * ________. 
where Ax(m) = ^JRJm^-P z\ t v i\ " / *

will contribute to exceedanees of ttj at (X,P). Rupture midpoints are restricted 

to lie within
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(A9)t 
2

Several cases must, therefore, be considered.

(a) Magnitudes m for wblch X   Ax(m)-    <£ 0.
<i

For these magnitudes, ev^en if the fault -were longer, any additional ruptures
i

of length bm -would be too far away from the site at (X,P) to produce 

accelerations a ^

Let 7Ti_ be the magnitude for which equality holds X = Ax (m) +    . Define 

as in equation A6. For m^^^m. ^m^ , all ruptures with Imid *n the range

will contribute to Ex(a.i\H). This corresponds to a fraction of possible 

magnitude m earthquakes " ,.

/r(m)-

x/
(All)

(b) Magnitudes 77i > TT^ for which X + Ax (m) +

At these magnitudes, additional ruptures of length 6m would contribute to 

accelerations a ^ aj if the fault extended beyond (0,0) in the negative x- 

direction. Adding fault length beyond (L , 0) in the positive x-direction would not

increase the possible ruptures which produce a >aj at (X,P), since X ^   .
% £t

Let TIT. =mg be the magnitude for which L   X   Ajr(Tn) +     . Define mu

as in equation A6. For TTI^ <m ^m^ all magnitude TTZ ruptures for which

will contribute for a fraction
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/r(m) =
X + Ax (m )

(A12)

giving for 7nUj <7n

- (A13) 
LI

(c) Magnitudes m^t <Tn Zm^^ (if TTVUI < m raM).

All earthquakes regardless of location on the fault will contribute to

eiceedances of aj.

For

/V(a
/

Combining these results yields, for 0

~b~ra.te exp(b

(A14)

L
2

exp( 6
m)

l ima

exp( 6 rn)
m) m" (A15) 

dm 4- j exp(  6m) dm 
L ^a

  ». 
Der Kiureghian and Ang (1977) have pointed out that for a site at (X.P)

the computation of Ex(ai \H) may be done instead for a site ----- . 2 1

located at (O.P) for tw segments of length X andL-^T and results combined so

(X,P)

vrhere

(0,0). (X,0)
X- L-X

(L,0)
____V

r _ y



(The fault may not be treated as two segments in the for model, because in that 

model possible rupture center locations depend upon both rupture length and 

fault length.) Der Kiureghian and Ang also asserted that for a site beyond the 

end of the fault, X < 0 or X >L , a similar decomposition holds.

) (x<0)

-x (0,0) 

  L-X
(L,0)
__\

,-xy^1-. (A! ?)

While this is true for most rupture lengths, there is one case in which it is

not correct. This formulation permits rupture lengths   - *-=L X. on
tLi

segment (L-X).

(X,P)

,Ra (m)

-brh/2'

x^dn) (0,0)
L-X

(L,0)

Jn the case shown,

where Zj(m) = ^ i(m)2 - P2.

so all magnitude m earthquakes on (L  X), on ( X) and by equation A17 on (L)

contribute to Ex(a^ \ff)(^eg L}- In reality, however, the maximum length rupture
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permitted for segment L is bm = 2L and X -f i/ +L < 0, so magnitude m does not 

contribute to Ex(a\ \H)(acg L')'
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Appendix B

Exceedances of acceleration CLQ when variability is taken into account for point 
source ruptures.

Pex(ao) is defined as the probability that a random earthquake in the range 

mo^m'^mmax will cause an acceleration greater than a 0 at a site when 

accelerations are assumed (for each magnitude) to be normally distributed 

around the (log) mean acceleration with standard deviation aa . That is. Pex(a 0) 

is is given by:

In(a 0)-ln(a)
pr(a)da (Bl)

v* 

where

pr(a)= density of (log-mean) acceleration a

ai =r lowest (log-mean) acceleration for which pr (a) >0 at the site; 

a z = highest (log-mean) acceleration for which pr (a) > 0 at the site. 

For earthquakes in the range m0 ^ TTL ^ 7n max> using the Esteva attenuation 

gives

ln(a)= c l + c 2 7n + c 3 ln(/?) 

Let

In(a 2) -in(a0)-f 

for the proper TL I , 7i z. 

Let

iz;=ln(a)-l 

Then

do. ^ Q.Q exp^i/-') dii)i emd

/ . <j*i 

fT

For the point source case, the probability that an acceleration ai>a is
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produced is

m m«x

(B3)

where for the Esteva attenuation

ln(a)- Cl -c3 lnCK)
m^               \H/*)

from which (see Appendix C)

. fc 6 exp[-6(ma -ra 0)] ^"cl" 1 ^ ,^ v 
pr(a) =   ^  ± ±     da=k;>ba 2 da (B5) 

C 2 a

where

k =
- exp[-6 (mTOIlx - m0)]

C 2 Cg

Thus

Pez(a 0) = fc 2 6 ao 8 J cr*(-  )exp( b  ) dm (B6) 

Using the relationships

^

2 V2

exp(a x)   erf (5 z )= exp(a x) erf (6 x)-  exp(  ^) erf(6 x   -r-r-)
a 46 26

yields

/3ex(a0) = (l fc ) ^> ("Tig)-4-fc ^> (TZ.J) (B7) 
e s K  

+k R z an z exp[6 ^  + 6m0 4-6 E  ^-IT^
eg . 2c 2

This is equivalent to Cornell's (1971) result.
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Appendix C 

Calculation of pr(a) from equations 26 and 34.

To calculate the acceleration density pr(a) from the exceedances of a as

given by equations 26 and 34, we note that

.-  / \ -1
1 (Cl)

da 

and differentiate under the integral sign using the following theorem:

If

Q(a}= f /(m,a)dm (C2)

where UQ and u\ are differentiate functions in a closed interval, (ao.aj); /{a:,a)
i 

and /a (m,a) are continuous in the region a 0 < a <aj and u 0 '(a): m. <ii 1 (a), then

_ f df(m,a 
da

(C3)J v « **/ » J V"'!***'/ j   
Cttt CtCt

 »0\«*/

The quantities m., in equation 28 and m^ f and m., in equation 34 enter as* 12

the upper limit of integration0 in one integral and lower limit in the succeeding 

integral. Hence derivatives of TTI with regard to a (the second and third terms 

in equation C3) cancel. The only derivative of m with regard to a that remains 

occurs at TTI = TTI^, .

We shall determine the expression for pr(a) specifically for the Esteva 

attenuation In a = GI + Cgm.-f- C 3 ln/? . In this case

8771 a
da

In a - Cj  c 3 lnCjD

C 2
(C4)

X>Q
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and

da
(C5)

Recall that earthquakes are restricted to occur in the magnitude range 

mo ^ m ^ mmfcx, and that

7nlo = lowest magnitude which produces acceleration a at (X,P).

The expression for pr(a) depends upon site location and magnitude limits 

, and 771^ (or m^ TTI^). (The limits mUi mUi and m^ are defined as in

equations 26 and 34 and relate to magnitudes above which ail earthquakes on

portions of the fault produce acceleration a or greater at (X,P).)

Case 1. Site at (X\P), 0<X.

Using equations 25, C4 and C5, we obtain

pr(a)=

where

NT
exp(-6m,min)

0

exp(6 m 0) 0/
l-exp[-6

Case 2. O^T ^   Using equation 34, C5 and C6 and setting

T = 1

T =
-/f exp(^m)]c a a

= max(m0,mj0 ) 

(C6)

; 771^ < 771 0.
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we obtain for pr(a)

H

0

c E a

r: 77LUj ;  mlo <m Q

m D =

iin = mf o ~

m O
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Appendix D

Decomposition of acceleration exceedances into "point source" and "rupture 
length" contributions and comparison of results of series expansion with direct 
integration for some cases.

Sarn.ple values of Ex(a \frat ) using the series expansion for /Q./I. JQ, J\ 

from equations F12 and F17 for an Esteva attenuation are shown.

Table Dl illustrates the contributions of 70 , /j, J 0, /j to the total 

exceedances of aj (for several values of aj) at a felt point above the center of

the fault at (  tP) as a function of break length
&

bm = exp(a + fr aa ) exp(gr m) = H(fr o-i)exp(gr m).

7 0, /i § J"0. «^i» are evaluated using equations Fll and^ F17 for an Esteva 

attenuation Ina = 3.4+.89m   1.171n/?. (Correction terms from equation F16 for 

j =0, 1, 2 the upper limit of integration have been applied to /of /i).

/ 0 represents accelerations that would occur of breaks were of zero length 

or point sources.

JQ is the integral of the "break length term" using denominator L.

11 and «/j are first order corrections to /0 for the finite break length 

H exp(<7 m) in the denominator [L   H expfo m)].
  ^

The magnitude range is 4.0 ^m ^7.5.

The minimum magnitude column gives the lowest magnitude earthquake 

(occurring at distance P) that could produce the specified acceleration at 

(X, P). Mu (fr crj) is the minimum of mjn^x and the magnitude beyond which an 

earthquake occurring anywhere on the fault would cause dj. The column faU 

represents all earthquakes in the range

The "sum" column gives the total

The "analytic" column gives the results of numerically integrating the 

original equation.

 >' 
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Table D2 is similar to table Dl for a felt point above the end of the fault at 

(O.P). In this case. J^   J\   0. /o and I\ do not contain the factor 2 included for 

a felt point above the center of the fault since now earthquakes occur only to

one side of (X,P).

Table Dlt Illustrating the decomposition of acceleration exceedances into point and 
rupture source contributions for a site 10 kro or 50 km from the center of a 400 km fault.

fr

-2
-1
0.
1.
2.

-2
-1
0
1
2

-2
-1
0
1
2

-2
-1
0
1
2

-2
-1
0
1
2

-2
-1
0
1
2

2.
2.
2.
2.
2.

5.
5.
5.
4.
2.

/0

58e-3
58e-3
58e-3
49e-3
06e-3

16e-4
16e-4
16e-4
88e-4
80e-4

1.94e-4
1.94e-4
1.946-4
l.BOe-4
5.086-5

5.20e-5
5.20e-5
5.20e-5
4.54e-5

1
1
1
6

4
4
4

.18e-4

.18e-4

.18e-4

.42e-5

.816-6

.Ble-6

.81e-6

^0

7.77e-5
2.
8.
2.

57e-4
52e-4
74e-3

7.76e-3

3.
1.

14«-5
04«-4

3.44e-4
1.09e-3
2.63e-3

1.80e-5
5.95e-5
1.97e-4
6.13e-4
8.21e-4

8.33e-6

/I
Site

6.99e-6
2.31e-5
7.67e-5
2.18e-4
4.46e-4

Site
2.39e-6
7.916-6
2.62e-5
7.40e-5
9.35e-3

Site
1.20e-6
3.97e-6
1.32e-5
3.65e-5
2.10e-5

Site
4.46e-7

2.76e-5 1.48e-6
9.14e-5
2.73e-4

5
1
5
1

7
2
7
3

.20e-6'-

.72e-5

.70e-5

.22e-4

.206-7

.39e-6

.90e-6

.88e-fi

4.89e-6
1.29e-5

Site
'1.196-6
3.93e-6
1.30e-5
1.90e-5

Site
7.77e-8
2.24«-7
7.43e-7

J * .
at (200,10)

1.93e-7
2.11e-6
2.32e-5
2.18e-4
1.54e-3

at (200,10)
1.32e-7
1.45e-6
1.59e-5
1.50e-4
7.47e-4

at (200,10)
l.Ole-7
l.lle-6
1.22e-5
1.14e-4
3.31e-4

at(200,10)
6.61e-B
7.25e-7
7.95e-6
7.23e-5

at (200,50)
4.90e-8
5.37e-7
5.89e-5
3.486-5
5.87e-4

at (200,50)
l.Ole-6
1.10e-7
1.21e-6
1. Ble-6

fall
ai =100

O.OOeO
O.OOeO
O.OOeO
2.076-4
2.35e-3

sum
fials
2.66e-3
2.86e-3
3.53e-3
5.87e-3
1.42e-2

analytic

2.66e-3
2.86e-3
3.53e-3
5.93e-3
1.48e-2

mmln

4.38
4.38
4.38
4.38
4.38

m^

7.50
7.50
7.50
6.91
5.86

a !~ 200 gals
O.OOe-0
O.OOe-0
O.OOe-0 -
1. 12e-4  
1.96e-3

a^SOC
O.OOe-0
O.OOe-0
O.OOe-0
8.25e-5
1.81e-3
a^SOO

O.OOe-0
O.OOe-0
O.OOe-0
5.93e-5
1.166-3

5.50e-4
6.29e-4
9.02e-4
1.91e-3
5.45e-3
gals
2.14e-4
2.59e-4
4.17e-4
1.03e-3
3.03e-3
gals
6.086-9
8.1Be-5
1.56e-4
4.63e-4
1.16e-3

5.50e-4
6.29e-4
9.05e-4
1.97e-3
5.88e-3

2.14e-4
2.59e-4
4.19e-4
1.07e-3
3.28e-3

6.08e-5
8.18e-5
1.586-4
4.99e-4
1.16e-3

5.16
5.16
5.16
5.16
5.16

5.62
5.62
5.62
5.62
5.62

6.19
6.19
6.19
6.19
6.19

7.50
7.50
7.50
7.10
5.94

7.50
7.50
7.18
7.18
5.98

7.50
7.50
7.50
7.25
6.19

a i=100 gals
O.OOe-0
O.OOe-0
O.OOe-0
l.Sle-4
5.73e-4

aj=20
O.OOe-0
O.OOe-0
O.OOe-0
4.33e-5
5.17e-5

1.24e-4
1.39e-4
1.94e-4
3.91e-4
5.87e-4

Dgals
5.61e-6
7.53e06
1.47e-5

-4:77e-5
6.75e-5

1.24e-4
1.40e-4
1.96e-4
4.14e-4
5.73e-4

5.85e-6
7.80e-6
1.53e-5
5.12e-5
5.17e-5

6.50
6.50
6.50
6.50
6.50

7.28
7.28
7.28
7.28
7.28

7.50
7.50
7.50
7.01
6.50

7.50
7.50
7.50
7.31
7.28
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Table D2. Illustrating the decomposition of acceleration exceedances into point and 
rupture sources for sites 10km and 50 km from the end of a 400 km fault.

fr

-2
-1
0' 1

2.

-2
-1
0
1
2

/O /I full
Site at (X,0)

1
1
1
1
1

2

.29e-3

.29e-3

.29e-3

.29e-3

.21e-3

.58e-4
2.58e-4
2
2
2

.58e-4

.58e-4

.23e-4

-2 9.71e-5
-1
0
1
2

-2
-1
0
1
2

9
9
9
7

2
2
2
2
1

.71e-5

.71e-5

.71e-5

.46e-5

.60e-5

.60e-5

.60e-5

.60e-5

.35e-5

3.
1.

50e-6
16e-5

3.83e-5
1.
3.

1.
3.
1.
4.
9.

6.
1.

27e-4
30e-4

Site
19e-8
96e-6
31e-5
34e-5
95e-5

Site
OOe-7
99e-6

6.58e-6
2.
4.

2.
7.
2.
8.
1.

18e-5
31e-5

Site
23e-7
39e-7
45e-8
10e-6
04e-5

O.OOe+0
0.00+0
0.00+0
O.OOe+0
4.18e-4

at (0. 10)
O.OOe+0
O.OOe+0
O.OOe+0
O.OOe+0
3.48e-4

at (0. 10)
O.OOe+0
O.OOe+0
O.OOe+0
O.OOe+0
3.23e-4

at (0,10)
O.OOe-0
O.OOe-0
O.OOe-0
O.OOe-0
3.01e-4

Site at(0,50)
-2
-1
0
1
2

-2
-1
0
1
2

-Z
-1
0
1
2

2
2
2
2
1

5
5
5
5
1

2
2
2
2

-8

.44«-4

.44e-4

.44e-4

.44e-4

.33e-4

.89e-5

.89e-5
,89e-5
.89e-5
.09e-5

.41e-6

.41e-6

.41e-6

.41e-8

.20e-7

1.
5.
1.
6.
8.

5.
1.
6.

'-'2.

9.

3.
1.

81e-6
98e-6
98e-5
56e-5
42e-5

Site
93e-7
97e-6
51e-6
15e-5
13e-8

Site
39e-8
12e-7

3.71e-7
1.

-1.
23e-6
39e-6

O.OOe-0
O.OOe-0
O.OOe-0
O.OOe-0
4.61e-4

at (0,50)
O.OOe-0
O.OOe-0
O.OOe-0
O.OOe-0
3.48e-4

at (0,50)
O.OOe-0
O.OOe-0
O.OOe-0
O.OOe-0
5.17e-5

sum
a l=iOQ K

1.29e-3
1.30e-3
1.33e-3
1.41e-3
1.96e-3

a i=200
2.59e-4
2.62e-4
2.71e-4
3.01e-4
6.70e-4

a i=300
9.77e-5
9.91e-5
1.04e-4
1.19e-4
4.41e-4

aj=500
2.62e-5
2.67e-5
2.84e-5
3.41e-5
3.25e-4

analytic TTiatin TTly
als

1
1
1
1
2

gals
2
2
2
3
8

gals
9
9
1
1
5

gals
  2

2
2
3
3

.29e-3

.30e-3

.33e-3
,45e-3
.25e-3

.59e-4

.62e-4

.72e-4

.16e-4

.39e-4

.77e-5

.92e-5

.04e-4

.28e-4

.57e-4

.62e-5

.68e-5

.87e-5

.87e-5

.86e-4

4.
4.
4.
4.
4.

5.
5.
5.
5.
5.

5.
5.
5.
5.
5.

6.
6.
6.
6.
6.

38
38
38
38
38

16
16
16
16
16

62
62
62
62
62

19
19
19
19
19

7.50
7.50
7.50
7.50
6.64

7.50
7.50
7.50
7.50
6.71

7.50
7.50
7.50
7.50
6.74

7.50
7.50
7.50
7.50
6.77

a i=60 gals
2.46e-4
2.50e-4
2.64e-4
3.10e-4
6.78e-4

0^=100
5.95e-5
6.09e-5
6.54e-5
8.05e-5
3.6Be-4

a i=200
2.44e-6
2.52e-6
2.78e-6
3.64e-6
4.95e-5

2
2
2
3
8

gals
5
6
6
9
4

gals
2
1
2
5
5

.46e-4

.50e-4

.66e-4

.42e~-4

.59e-4

.95e-5

.10e-5

.63e-5

.49e-5

.32e-4

.56e-6

.65e-6

.99e-6

.25e-6

.17e-5

5.
5.
5.
5.
5.

6.
6.
6.
6.

92
92
92
92
92

50
50
50
50

6.50

7.
7.
7.
7.
7.

28
28
28
28
28

7.50
7.50
7.50
7.50
6.60

7.50
7.50
7.50
7.50
6.71

7.50
7.50
7.50
7.50
7.28

65



Appendix E

Tables to illustrate how acceleration exceedances vary as a function of site 
location, rupture model, attenuation function and rupture length.

Tabular entries show yearly exceedance rates of 100 gals (.lg) multiplied by 

108. Absolute values are not intended to be significant; only relative values are 

meaningful for comparison between models, etc. Results will be given for three 

cases.

Case 1: for (fault contained rupture) model: ruptures wholly contained within 

fault limits; Esteva attenuation

lna=3.4+ .89m -1.171n/? (El) 

Case 2: der Kiureghian and Ang model: rupture midpoints only must be on the

fault; ruptures may extend beyond end of fault by one-half rupture length.

Same attenuation function as Case 1.

Case 3: fcr model using Schnabel and Seed (1973) attenuation curves.

Results are for a fault 400 km long, located on the ^-axis from (0,0) (400,0). 

Site is located at (X,P). Column headings give X coordinate of site (from 200 

km, directly above the center of the fault to -50 km beyond end of fault.) Row 

headings give P coordinate where

P = \/Y*+d z if equation El is used; R = V*2 + P 2

P   Y if Schnabel and Seed attenuation is used.

Input values 6=2 (see model assumption 4), rate^.l earthquakes per year, 

and magnitude range 4.0^ra^'7.5 are used. The rupture length-magnitude 

relationship is from Bonilla and Buchanan (1970):

log 10 =~1.0B5+.389m+.52/r 

where .52 = eri( standard deviation in log rupture length.

Ex(a \fr crj) shown correspond to fr = ~2 (short), fr = 0 (median), fr = .313 

(average) and fr = 2 (long) ruptures. The result integrated over rupture length 

  1.5$/r$1.5 is also given. [Ex(a \ .313crj)] may be compared with the
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integrated result Ex (a ).]

Two results Pex(a |.313oj) are also shown for Case 1 when integration is done 

over acceleration variability, for cra = .6 and cra = .3 for accelerations lognormally 

distributed around their median (mean log) values. (Rupture length 3.13(7j is 

"average" or mean length.) These integrated results should be compared with 

Ex (a I.SlSori) for Case 1 in which va =0.

Case 1. fcr model, Esteva attenuation
(la) Exceedances of 100 gals for very short ruptures (-2

P
10
20
30
40
50
65
80

100

200
2660

811
382
211
124
57
23

3

100
2660
810
382
211
124
57
23

3

Ex(lQi

50
2632
786
362
196
114
52
22

3

3|-2a4 
X

10
2179

565
245
129
74
33
14
2

)108

0
1291
392
184
101
60
27
11

1

-5
762
301
153
87
52
24
10

1

-10
434
222
124
74
45
21

8
1

-50
23
20
16
12
6
4
1
0

(Ib) Exceedances of 100 gals for median length ruptures (0

(ic) Exceedances of 100 gals for "mean" length ruptures (.313oj).

P
10
20
30
40
50
65
80
100

200
3533
1136
559
320
196
96
43
6

100
3513
1117
542
307
186
90
40
6

fo(10

50
3410
1028
470
252
145
66
28
4

X
10

2443
607
265
142
83
38
16
2

108

0
1328
413
198
111
66
31
13
1

-5
790
319
165
96
58
27
11
1

-10
455
237
135
81
50
24
10
1

-50
26
23
18
14
9
4
1
0

P
10
20
30
40
50
65
80
100

200
3989
1312
657
383
238
120
55
9

I

100
3946
1273
622
353
214
103
46
8

?x(lOO

50
3790
1138
515
272
156
71
30
5

|. 313(7 
X
10

2521
623
275
149
87
41
17
2

i)io8

0
1348
425
206
117
70
33
14
2

-5
805
329
172
101
62
29
12
1

-10
466
245
241
86
54
26
10
1

-50
28
24
20
15
10
5
1
0
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(id) Exceedances of 100 gals for very long ruptures (2<jj).

P
10
20
30
40
50
65
80
100

200
14804
5272
2429
1129
587
249
106
18

100
13282
4008
1868
1047
587
249
106
18

£x(lC

50
9542
2614
1368
862
559
249
106
18

X
10

3719
1416
888
636
468
249
106
18

>io

0
2247
1104
756
567
432
249
106
18

-5
1570
950
689
530
412
247
105
18

-10
1125
812
624
494
391
239
102
17

-50
339
323
300
263
182
94
37
0

(le) Exceedances of 100 gals integrated over rupture length,  1.5^/r ^ 1.5/r

Ex (100) 10* 
X

P
10
20
30
40
50
65
80
100

200
4024
1330
667
388
240
118
53
9

100
3963
1274
617
347
209
101
45
7

50
3763
1110
500
268
157
74
33
5

10
2465
629
281
154
92
44
19
3

0
1356
431
212
121
74
36
16
2

-5
811
334
177
105
65
32
14
2

-10
472
251
145
90
57
28
12
1

-50
30
26
21
16
11
5
2
0

Case 2. der-Kiureghian and Ang model. Esteva attenuation 

(2a) Exceedances of 100 gals for very short ruptures ( Stf

P
10
20
30
40
50
65
80
100

200
2561
806
379
209
123
56
23
3

.

100
2650
806
379
209
123
56
23
3

£*(10C

50
2625
784
361
196
114
52
22
3

> 1-2*1

X
10

2195
574
250
132
76
34
14
2

)106

0
1325
403
190
104
61
28
12
1

-5
793
312
159
90
54
25
10
1

-10
458
232
129
77
47
22
9
1

-50
25
22
18
13
9
4
1
0

(2b) Exceedances of 100 gals for median length ruptures

£ ^(100 lOaJlO6 
X

P
10
20
SO
40
50
65
80
100

200
3425
1073
516
290
175
84
37
5

100
3420
1068
512
287
173
83
37
5

50
3366
1022
474
258
151
71
31
5

10
2712
720
321
173
102
48
21
3

0
1712
536
258
145
87
42
18

-^-3-

-5
1142
443
227
131
80
39
17
2

-10
713
353
195
117
73
36
16
2

-50
58
51
42
32
23
13
6
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(2c) Exceedances of 100 gals for "mean" length ruptures (.313

Ez(lOQ |.313erz )lOft
>\

P
10
20
30
40
50
65
80

100

200
3812
1206
584
331
201

97
43

7

100
3802
1197
577
325
196
95
43

7

50
3732
1136
527
287
168
79
35

6

10
2954

789
255
196
115
55
24

4

0
1906
603
292
166
100
49
22

3

i

-5
1328
510
261
151
93
46
20

3

-10
859
418
229
137
86
42
19
3

-50
80
70
57
44
32
18

9
1

(2d) Exceedances of 100 gals for very long ruptures

Ex (WO 2<Ti)l06 
X

P
10
20
30
40
50
65
80
100 ,

200
11684
3776
1804
947
568
249
106
18

100
11410
3528
1600
848
495
235
105
18

50
10544
2919
1309
721
435
215
100
18

10 0
7117 5953
2181 1995
1066 1004
615 588
382 368
195 189
94 91
18 18

-5
5371
1903
973
574
361
187
90
17

-10
4789
1810
942
561
355
186
89
17

-50
1356
1067
694
450
298
160
79
15

(2e) Exceedances of 100 gals integrated over rupture length,  1.5 ̂  fr ^ 1.5.

P
10
20
30
40
50
65
80
100

200
3813
1206
584
330
200
97
43
7

100
3798
1192
572
320
192'

92
41
6

Ex

50
3720
1125
519
281
165
77
34
5

(100) U 
X
10

2921
785
355
194
115
55
24
4

38

0
1907
603
292
166
100
49
22
3

-&
1340
511
261
151
93
46
20
3

-10
893
421
230
137
86
42
19
3

-50
94
82
66
50
36
20
9
1

Case 3. fcr model, Schnabel and Seed attenuation

(3a) Exceedances of 100 gals for very short ruptures ( 20j)

P
10
20
30
40
50
65
100

200
1157
827
479
162
69
15
0

100
1157 '
827
479
182
69
15
0

r(lOO

50
1143
816
471
178
68
15
0

X
10
775 .
548
326
119
43
10
0

) 106

0
564
402
230
86
33
7
0

^ .

-5
455
328
181
70
27
G
0

-10
355
257
136
54
22
4
0

-50
10
7
5
2
0
0
0
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(3b) Exceedances of 100 gals for median ruptures

p
10
20
30
40
50
65
80

200
1519
1117
703
298
123
34
0

100
1510
1109
696
294
120
34
0

fc(lO

50
1407
1024
634
252
93
24
0

X
10
818
578
349
131
46
11
0

)10e

0
589
422
245
94
36
8
0

-5
476
345
193
76
31
6
0

-10
373
271
146
59
25
5
0

-50
11
9
5
2
1
0
0

(3c) Exceedances of 100 gals for mean length ruptures (.313(7j)

£z(lOO].313oj)l08 
X

P
10
20
30
40
50
65
80

200
1714
1274
826
211
155
45

0

100
1687
1249
805
211
143
41

0

50
1517
1108
700
196
100
26

0

10
836
593
360
129
51
12
0

0
603
434
253
101
39

9
0

-5
488
355
200

87
33

7
0

-10
382
280
152
74
27

5
0

-50
12
9
6
2
1
0
0

(3d) Exceedances of 100 gals for very long ruptures (+2crj)

£1x(l00j-2o-i )l06 
X

P
10
20
30
40
50
65
100

200
6167
4773
3469
1348
415
109
0

100
4738
3548
2556
1185
415
109
0

50
3125
2405
1761
925
415
109

0

10
1743
1401
1038
632
380
109

0

0
1385
1137
844
545
356
109

0

-5
1206
1006
745
499
341
107

0

-10
1037
874
651
454
324
100

0

-50
299
283
214
122
47
0
0

(3e) Exceedances of 100 gals integrated over rupture length, (  1.5^/r ^ 1.5)

£"x(lOO)l06 
X

p
10
20
30
40
50
65 

JOO

200
1741
1297
846
377
160
46
0

100
1684
1245
801
342
137
39 
0

50
1463
1075
674
267
102
28 
0

10
842
600
365
141
54
14 
0

0
609
439
258
102
42
10 
0

-5
494
360
205
83
35
8 
0

-10
387
284
155
65
23
6 
0

-50
13
10
7
3
1
0 
0
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Exceedances of 100 gals integrated over variability in acceleration for fcr model. Esteva 
attenuation.

(4a) Exceedances of 100 gals integrated over acceleration
variability (aa = .3) using "mean" rupture length (.313a/

Pea:(lOO|.313

P
10
20
30
40
50
65
80
100

200
4443
1512
763
451
286
152
81
32

100
4409
1474
727
419
259
133
68
26

50
4256
1335
614
333
196
96
48
18

<7,)106 

X
10

2895
754
336
185
112
57
29
11

*<

0
1565
511
252
146
91
47
24
9

,=.3

-5
986
407
217
130
83
43
23
9

-10
575
306
178
111
72
39
20
8

-50
39
35
30
24
18
11
6
3

(4b) Exceedances of 100 gals integrated over acceleration
variability (cr0 =.6) using "mean" rupture length (.313oj)

P
10
20
30
40
50
65
80
100

200
5348
2390
1227
742
489
286
178
99

Pex(

100
5302
2334
1181
699
452
257
155
85

50
5101
2167
1033
583
363
199
118
64

13(7,) 1(

X
10

3378
1330
609
346
221
126
78
44

38 u
\

0
2059
905
460
277
183
108
68
39

= .6

-5
1468
735
402
252
170
102
65
37

*-10

967
557
334
219
15
93
60
35

-50
89
81
71
61
50
37
27
18
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Appendix F

Discussion and derivation of Jn (H) (equaton 53) for the Esteva attenuation 
function.

From equation 52,

?r> f-h rrr^^/R,(m^-PZ {L»_ .._. ,__ x
(f i;

y '"-y n=o 

where

/n (/O =   / exp(-6m)i(m)2 -P 2 exp(7ipm)dm (F2)
Zs M , '"jnin

6 exp(b
1LTJT1 __ __________________ * V

~" 1- exp[-b 

For the Esteva attenuation function

c 3ln/?(m); c 3 <0. (F3)

and

-Ri(m)2 ^XexP(cm) (F4) 

>vhere

K = $ expt^i): c = -=. (F5)

  For m^jn. the lowest magnitude producing acceleration a t at a site at (X.P),

- K exp(c m^ - P2- (F6) 

and

Define a new variable w:

P IE
,  C 771

1U = ) (FB) R 1

Then (assuming P $ 0), equation F2 may be written:

1 b-ng __ 3^

f -w 
(^-)»

(F9)

where

72



Qn (H)=NT
X izTV. p
iL c _L
P E CL n * 1 

Using the relationship, which is valid for m. n >0.

1
(Fll)

  (QJI inequality whioh. depending on parameter values, may possibly 
c 2

bold only for n as low as zero or one) equation F9 may be written:

- / (FIE)

The second term in equation F12 would vanish if an infinite maximum

2 
fmagnitude were permitted. The upper limit of integration   -.    r is

actually a function of magnitude difference T7i raajt  7n min since

(FL3)

As 1 and the "correction" term, approaches the

principal term. However, if /?i(7n niBLI)».P, the correction term is small, -w  

\ 

remains small, and a few terms of the series give a good approximation to

R

(F14)
*  " y=o 

and the second term of equation F12 may be approximated by

°___^B , ___P__,2
(

r
/ (F15)

-V n iVm m- L> sj i~
b-ng + .±

c J 2

The ratio of the third term to the second in the summation is less than



2
P

and for ~^ /    <.6, for example, using as few as two terms of

the series will give less than 10% error.

p 
Note that these approximations require that -= 7     r- = 1. or that

  7Tl o- Again observe that for accelerations "which -would be obtained at 

magnitudes m £m0, the artificial restriction that all earthquakes occur at 

magnitudes m ^TTI O complicates the mathematics and may distort the results.

(b) integration of Jn (//)-- equation 55. The Jn terms may be integrated directly 

giving

exp[(-b T NT 771 =771mar (F16)
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